Combined Transcriptomic and Metabolomic Approach Revealed a Relationship between Light Control, Photoprotective Pigments, and Lipid Biosynthesis in Olives.

Tiziana Maria Sirangelo, Ivano Forgione, Samanta Zelasco, Cinzia Benincasa, Enzo Perri, Elisa Vendramin, Federica Angilè, Francesco Paolo Fanizzi, Francesco Sunseri, Amelia Salimonti, Fabrizio Carbone
Author Information
  1. Tiziana Maria Sirangelo: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID
  2. Ivano Forgione: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID
  3. Samanta Zelasco: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy.
  4. Cinzia Benincasa: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID
  5. Enzo Perri: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID
  6. Elisa Vendramin: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via di Fioranello, 52, 00134 Rome, Italy.
  7. Federica Angilè: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID
  8. Francesco Paolo Fanizzi: Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy. ORCID
  9. Francesco Sunseri: Department Agraria, University Mediterranea of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, Italy. ORCID
  10. Amelia Salimonti: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID
  11. Fabrizio Carbone: Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy. ORCID

Abstract

Olive possesses excellent nutritional and economic values for its main healthy products. Among them, a high content of antioxidant compounds, balanced during the ripening process, are produced under genetic and environmental control, resulting in high variability among cultivars. The genes involved in these complex pathways are mainly known, but despite many studies which indicated the key role of light quality and quantity for the synthesis of many metabolites in plants, limited information on these topics is available in olive. We carried out a targeted gene expression profiling in three olive cultivars, Cellina di Nardò, Ruveia, and Salella, which were selected for their contrasting oleic acid and phenolic content. The - combined approach revealed a direct correlation between a higher expression of the main flavonoid genes and the high content of these metabolites in 'Cellina di Nardò'. Furthermore, it confirmed the key role of in the linoleic acid biosynthesis. More interestingly, in all the comparisons, a co-regulation of genes involved in photoperception and circadian clock machinery suggests a key role of light in orchestrating the regulation of these pathways in olive. Therefore, the identified genes in our analyses might represent a useful tool to support olive breeding, although further investigations are needed.

Keywords

References

  1. Front Plant Sci. 2020 Feb 13;11:66 [PMID: 32117401]
  2. Plant Cell Physiol. 2016 Apr;57(4):798-812 [PMID: 26872834]
  3. Plant Physiol. 2000 May;123(1):363-70 [PMID: 10806253]
  4. Food Chem. 2019 Dec 1;300:125246 [PMID: 31357017]
  5. Planta. 2013 Jun;237(6):1425-41 [PMID: 23417646]
  6. Plant Physiol. 2005 Jan;137(1):199-208 [PMID: 15618424]
  7. Plant J. 2007 Mar;49(6):981-94 [PMID: 17319847]
  8. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  9. Front Nutr. 2019 Jul 04;6:94 [PMID: 31334240]
  10. Prog Lipid Res. 1994;33(1-2):193-202 [PMID: 8190740]
  11. Trends Plant Sci. 2012 Oct;17(10):584-93 [PMID: 22705257]
  12. Plant Sci. 2015 Sep;238:64-72 [PMID: 26259175]
  13. Mol Nutr Food Res. 2007 Oct;51(10):1199-208 [PMID: 17879991]
  14. Plant Cell Physiol. 2018 Mar 1;59(3):441-447 [PMID: 29415166]
  15. Science. 2000 Dec 15;290(5499):2110-3 [PMID: 11118138]
  16. BMC Plant Biol. 2019 Oct 16;19(1):428 [PMID: 31619170]
  17. BMC Genomics. 2009 Aug 26;10:399 [PMID: 19709400]
  18. Phytochemistry. 2015 Feb;110:46-57 [PMID: 25514818]
  19. Front Plant Sci. 2022 Apr 28;13:870974 [PMID: 35574124]
  20. Plant Physiol. 2011 May;156(1):173-84 [PMID: 21398257]
  21. J Sci Food Agric. 2017 Aug;97(11):3530-3539 [PMID: 28071794]
  22. Physiol Plant. 2003 Apr;117(4):459-466 [PMID: 12675736]
  23. Plant Cell Environ. 2014 Jul;37(7):1688-702 [PMID: 24433205]
  24. Plant Cell Environ. 2012 Oct;35(10):1742-55 [PMID: 22697796]
  25. Int Rev Cytol. 2005;244:1-68 [PMID: 16157177]
  26. J Exp Bot. 2020 Jul 6;71(14):4057-4068 [PMID: 32227095]
  27. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  28. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  29. Plant Genome. 2020 Mar;13(1):e20010 [PMID: 33016633]
  30. FEBS Lett. 2007 Apr 3;581(7):1495-500 [PMID: 17379215]
  31. Front Plant Sci. 2016 Jan 19;6:1246 [PMID: 26834761]
  32. Int J Mol Sci. 2021 May 28;22(11): [PMID: 34071656]
  33. Genes (Basel). 2021 Apr 09;12(4): [PMID: 33918715]
  34. Metabolites. 2018 Sep 30;8(4): [PMID: 30274398]
  35. J Agric Food Chem. 2015 Aug 5;63(30):6731-8 [PMID: 26184645]
  36. J Chromatogr A. 2004 Oct 29;1054(1-2):113-27 [PMID: 15553137]
  37. J AOAC Int. 2005 Sep-Oct;88(5):1269-78 [PMID: 16385975]
  38. J Plant Physiol. 2008 Oct 9;165(15):1545-62 [PMID: 18571766]
  39. BMC Plant Biol. 2012 Sep 10;12:162 [PMID: 22963618]
  40. J Bacteriol. 2009 Jun;191(12):3992-4001 [PMID: 19363110]
  41. Plant Cell. 2017 May;29(5):1157-1174 [PMID: 28446542]
  42. Magn Reson Chem. 2010 Aug;48(8):642-50 [PMID: 20589730]
  43. Plant Foods Hum Nutr. 2011 Mar;66(1):1-10 [PMID: 21253861]
  44. Plant Sci. 2017 Jul;260:60-69 [PMID: 28554475]
  45. Physiol Plant. 2012 Jun;145(2):296-314 [PMID: 22257084]

Grants

  1. Project BIOTECH-GENOLICS DM 18108 - 07/06/2018/Ministry of Agricultural, Food and Forestry Policies
  2. Project OLGENOME DM 13939 -24/04/2018/Ministry of Agricultural, Food and Forestry Policies

MeSH Term

Olea
Transcriptome
Plant Breeding
Gene Expression Profiling
Linoleic Acid

Chemicals

Linoleic Acid

Word Cloud

Created with Highcharts 10.0.0olivegeneshighcontentkeyrolelightexpressionmainripeningcultivarsinvolvedpathwaysmanymetabolitestargetedgenediacidOlivepossessesexcellentnutritionaleconomicvalueshealthyproductsAmongantioxidantcompoundsbalancedprocessproducedgeneticenvironmentalcontrolresultingvariabilityamongcomplexmainlyknowndespitestudiesindicatedqualityquantitysynthesisplantslimitedinformationtopicsavailablecarriedprofilingthreeCellinaNardòRuveiaSalellaselectedcontrastingoleicphenolic-combinedapproachrevealeddirectcorrelationhigherflavonoid'CellinaNardò'Furthermoreconfirmedlinoleicbiosynthesisinterestinglycomparisonsco-regulationphotoperceptioncircadianclockmachinerysuggestsorchestratingregulationThereforeidentifiedanalysesmightrepresentusefultoolsupportbreedingalthoughinvestigationsneededCombinedTranscriptomicMetabolomicApproachRevealedRelationshipLightControlPhotoprotectivePigmentsLipidBiosynthesisOlivesHPLC-MS/MSanalysissignaltransductionRNA-Seq

Similar Articles

Cited By