Mapping global non-floodplain wetlands.

Charles R Lane, Ellen D'Amico, Jay R Christensen, Heather E Golden, Qiusheng Wu, Adnan Rajib
Author Information
  1. Charles R Lane: U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, Georgia, USA.
  2. Ellen D'Amico: Pegasus Technical Service, Inc. c/o U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
  3. Jay R Christensen: U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, Ohio, USA.
  4. Heather E Golden: U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, Ohio, USA.
  5. Qiusheng Wu: Department of Geography & Sustainability, University of Tennessee, Knoxville, Tennessee, USA.
  6. Adnan Rajib: Hydrology and Hydroinformatics Innovation Lab, Department of Civil Engineering, University of Texas at Arlington, Arlington, Texas, USA.

Abstract

Non-floodplain wetlands - those located outside the floodplains - have emerged as integral components to watershed resilience, contributing hydrologic and biogeochemical functions affecting watershed-scale flooding extent, drought magnitude, and water-quality maintenance. However, the absence of a global dataset of non-floodplain wetlands limits their necessary incorporation into water quality and quantity management decisions and affects wetland-focused wildlife habitat conservation outcomes. We addressed this critical need by developing a publicly available "Global NFW" (Non-Floodplain Wetland) dataset, comprised of a global river-floodplain map at 90 m resolution coupled with a global ensemble wetland map incorporating multiple wetland-focused data layers. The floodplain, wetland, and non-floodplain wetland spatial data developed here were successfully validated within 21 large and heterogenous basins across the conterminous United States. We identified nearly 33 million potential non-floodplain wetlands with an estimated global extent of over 16×10 km. Non-floodplain wetland pixels comprised 53% of globally identified wetland pixels, meaning the majority of the globe's wetlands likely occur external to river floodplains and coastal habitats. The identified global NFWs were typically small (median 0.039 km), with a global median size ranging from 0.018-0.138 km. This novel geospatial Global NFW static dataset advances wetland conservation and resource-management goals while providing a foundation for global non-floodplain wetland functional assessments, facilitating non-floodplain wetland inclusion in hydrological, biogeochemical, and biological model development. The data are freely available through the United States Environmental Protection Agency's Environmental Dataset Gateway (https://gaftp.epa.gov/EPADataCommons/ORD/Global_NonFloodplain_Wetlands/, last access: 24 May 2023) and through https://doi.org/10.23719/1528331 (Lane et al., 2023a).

References

  1. Earth Sci Rev. 2022 Dec;235:1-24 [PMID: 36970305]
  2. Remote Sens Environ. 2019 Jul 1;228:1-13 [PMID: 33776151]
  3. PLoS One. 2015 Aug 10;10(8):e0135445 [PMID: 26258590]
  4. Remote Sens (Basel). 2018;10(4):580 [PMID: 30147945]
  5. Front Ecol Environ. 2017 Aug;15(6):319-327 [PMID: 30505246]
  6. Sci Data. 2021 Oct 15;8(1):271 [PMID: 34654838]
  7. Hydrol Process. 2018;32(2):305-313 [PMID: 29681686]
  8. Science. 2013 Feb 22;339(6122):940-3 [PMID: 23430651]
  9. Remote Sens Environ. 2017;191:328-341 [PMID: 31346298]
  10. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):1978-86 [PMID: 26858425]
  11. Ecosystems. 2022 Feb 7;26:1-28 [PMID: 37534325]
  12. Environ Res Commun. 2021;3:1-10 [PMID: 34746644]
  13. Nat Geosci. 2017;10(11):809-815 [PMID: 30079098]
  14. Nature. 2020 Dec;588(7839):625-630 [PMID: 33328640]
  15. ISPRS J Photogramm Remote Sens. 2020 Apr;162:184-199 [PMID: 35746921]
  16. J Am Water Resour Assoc. 2018 Mar 1;54:346-371 [PMID: 34887654]
  17. Water Resour Res. 2020 Jul 6;56(7):e2019WR026561 [PMID: 33364639]
  18. Environ Sci Technol. 2019 Jul 2;53(13):7203-7214 [PMID: 31244063]
  19. Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11558-11561 [PMID: 31186378]
  20. Nat Water. 2023 Apr 6;1:370-380 [PMID: 37389401]
  21. Water Resour Res. 2015 Sep;51(9):7358-7381 [PMID: 27594719]
  22. Ecol Appl. 2015 Mar;25(2):451-65 [PMID: 26263667]
  23. Sci Total Environ. 2017 Jan 1;574:46-56 [PMID: 27623526]
  24. J Hydrol X. 2018 Dec 1;1: [PMID: 31448367]
  25. Nature. 2016 Dec 15;540(7633):418-422 [PMID: 27926733]
  26. Environ Sci Technol. 2014 Apr 15;48(8):4217-25 [PMID: 24575859]
  27. Nature. 2023 Jun;618(7964):215 [PMID: 37277599]
  28. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3731-3734 [PMID: 29636426]
  29. J Am Water Resour Assoc. 2018;54(2):372-399 [PMID: 31296983]
  30. Int J Remote Sens. 2019 May 1;40(15):5768-5798 [PMID: 33408426]
  31. Sci Total Environ. 2017 May 15;586:319-327 [PMID: 28190574]
  32. Sci Total Environ. 2019 Jan 10;647:942-953 [PMID: 30180369]
  33. Environ Res Lett. 2021 Sep 3;16(9):1-5 [PMID: 36561375]
  34. J Am Water Resour Assoc. 2019 Apr 5;55(2):354-368 [PMID: 33776405]
  35. J Environ Qual. 2018 Jul;47(4):902-913 [PMID: 30025042]
  36. Nat Commun. 2016 Dec 15;7:13603 [PMID: 27976671]
  37. Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12321-12325 [PMID: 30514751]
  38. Environ Sci Technol. 2022 Sep 20;56(18):13284-13293 [PMID: 36040952]
  39. Sci Data. 2018 Oct 30;5:180214 [PMID: 30375988]
  40. J Environ Manage. 2016 Dec 15;184(Pt 2):327-339 [PMID: 27745769]
  41. Nature. 2023 Feb;614(7947):281-286 [PMID: 36755174]
  42. Glob Chang Biol. 2017 Sep;23(9):3581-3599 [PMID: 28295834]
  43. Ecol Appl. 2018 Jun;28(4):953-966 [PMID: 29437239]
  44. Sci Data. 2019 Jan 15;6:180309 [PMID: 30644852]
  45. J Am Water Resour Assoc. 2019 Apr;55(2):307-317 [PMID: 31787838]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0globalwetlandnon-floodplainwetlandsdatasetdataidentifiedkmNon-floodplain-floodplainsbiogeochemicalextentwetland-focusedconservationavailablecomprisedmapUnitedStatespixelsmedian0Environmentallocatedoutsideemergedintegralcomponentswatershedresiliencecontributinghydrologicfunctionsaffectingwatershed-scalefloodingdroughtmagnitudewater-qualitymaintenanceHoweverabsencelimitsnecessaryincorporationwaterqualityquantitymanagementdecisionsaffectswildlifehabitatoutcomesaddressedcriticalneeddevelopingpublicly"GlobalNFW"Non-FloodplainWetlandriver-floodplain90mresolutioncoupledensembleincorporatingmultiplelayersfloodplainspatialdevelopedsuccessfullyvalidatedwithin21largeheterogenousbasinsacrossconterminousnearly33millionpotentialestimated16×1053%globallymeaningmajorityglobe'slikelyoccurexternalrivercoastalhabitatsNFWstypicallysmall039sizeranging018-0138novelgeospatialGlobalNFWstaticadvancesresource-managementgoalsprovidingfoundationfunctionalassessmentsfacilitatinginclusionhydrologicalbiologicalmodeldevelopmentfreelyProtectionAgency'sDatasetGatewayhttps://gaftpepagov/EPADataCommons/ORD/Global_NonFloodplain_Wetlands/lastaccess:24May2023https://doiorg/1023719/1528331Laneetal2023aMapping

Similar Articles

Cited By