Subtle Structural Modification of a Synthetic Cannabinoid Receptor Agonist Drastically Increases its Efficacy at the CB1 Receptor.

Hideaki Yano, Rezvan Chitsazi, Christopher Lucaj, Phuong Tran, Alexander F Hoffman, Michael H Baumann, Carl R Lupica, Lei Shi
Author Information
  1. Hideaki Yano: Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States. ORCID
  2. Rezvan Chitsazi: Computational Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States.
  3. Christopher Lucaj: Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States.
  4. Phuong Tran: Computational Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States.
  5. Alexander F Hoffman: Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland 21224, United States.
  6. Michael H Baumann: Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States. ORCID
  7. Carl R Lupica: Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland 21224, United States.
  8. Lei Shi: Computational Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States. ORCID

Abstract

The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks, including fatalities. Many SCRAs exhibit much higher efficacy and potency compared with the phytocannabinoid Δ-tetrahydrocannabinol (THC) at the cannabinoid receptor 1 (CB1R), leading to dramatic differences in signaling levels that can be toxic. In this study, we investigated the structure-activity relationships of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer assays, we identified a few SCRAs exhibiting significantly higher efficacy in engaging the G protein and recruiting β-arrestin than the reference CB1R full agonist CP55940. Importantly, the extra methyl group on the head moiety of 5F-MDMB-PICA, as compared to that of 5F-MMB-PICA, led to a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by the functional effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R models bound with both of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of the structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.

Keywords

References

  1. Neuropharmacology. 2017 Sep 15;124:25-37 [PMID: 28392266]
  2. Trends Pharmacol Sci. 2017 Mar;38(3):257-276 [PMID: 28162792]
  3. Arch Toxicol. 2022 Nov;96(11):2935-2945 [PMID: 35962200]
  4. Curr Protoc Neurosci. 2017 Oct 23;81:5.33.1-5.33.13 [PMID: 29058771]
  5. ACS Chem Neurosci. 2015 Sep 16;6(9):1546-59 [PMID: 26134475]
  6. Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1652-62 [PMID: 26806157]
  7. ACS Chem Neurosci. 2016 Sep 21;7(9):1241-54 [PMID: 27421060]
  8. J Forensic Sci. 2020 Jan;65(1):170-182 [PMID: 31211877]
  9. J Neurochem. 2008 Jul;106(1):70-82 [PMID: 18331587]
  10. Addict Biol. 2017 Mar;22(2):390-399 [PMID: 26732435]
  11. Elife. 2020 Jan 27;9: [PMID: 31985399]
  12. J Pharmacol Exp Ther. 1998 Jun;285(3):995-1004 [PMID: 9618400]
  13. J Anal Toxicol. 2018 Mar 1;42(2):e21-e25 [PMID: 29186561]
  14. Biochem Pharmacol. 2020 May;175:113871 [PMID: 32088263]
  15. Nat Chem Biol. 2022 Aug;18(8):831-840 [PMID: 35637350]
  16. Bioinformatics. 2006 Mar 1;22(5):623-5 [PMID: 16397007]
  17. Br J Pharmacol. 2023 Feb;180(3):369-382 [PMID: 36250246]
  18. ACS Pharmacol Transl Sci. 2019 Feb 8;2(1):52-65 [PMID: 30775693]
  19. Cell. 2019 Jan 24;176(3):448-458.e12 [PMID: 30639101]
  20. Mol Cell Endocrinol. 2019 Apr 5;485:9-19 [PMID: 30738950]
  21. Mol Pharmacol. 2009 Oct;76(4):833-42 [PMID: 19643997]
  22. Annu Rev Physiol. 2009;71:283-306 [PMID: 19575681]
  23. J Anal Toxicol. 2020 Apr 30;44(3):207-217 [PMID: 31909808]
  24. Forensic Sci Med Pathol. 2022 Dec;18(4):393-402 [PMID: 35699867]
  25. ACS Chem Neurosci. 2020 May 20;11(10):1400-1405 [PMID: 32324370]
  26. Nature. 2017 Jul 27;547(7664):468-471 [PMID: 28678776]
  27. J Chem Theory Comput. 2019 Mar 12;15(3):1863-1874 [PMID: 30768902]
  28. Forensic Sci Int. 2020 Sep;314:110410 [PMID: 32683270]
  29. Nat Rev Neurosci. 2015 Jan;16(1):30-42 [PMID: 25524120]
  30. Br J Pharmacol. 2016 Oct;173(20):3018-27 [PMID: 26276510]
  31. Angew Chem Int Ed Engl. 2013 Nov 18;52(47):12256-67 [PMID: 24151256]
  32. Cell. 2016 Oct 20;167(3):750-762.e14 [PMID: 27768894]
  33. Arch Toxicol. 2021 Feb;95(2):489-508 [PMID: 33236189]
  34. Nat Rev Neurosci. 2003 Nov;4(11):873-84 [PMID: 14595399]
  35. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12471-6 [PMID: 12205290]
  36. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18684-9 [PMID: 22031696]
  37. Nature. 2001 Mar 29;410(6828):588-92 [PMID: 11279497]
  38. Handb Exp Pharmacol. 2018;252:165-190 [PMID: 29980914]
  39. J Neurophysiol. 1999 Sep;82(3):1286-94 [PMID: 10482747]
  40. Nature. 2016 Dec 22;540(7634):602-606 [PMID: 27851727]
  41. Mol Cell Endocrinol. 2011 Jan 15;331(2):241-7 [PMID: 20654693]
  42. Br J Pharmacol. 2019 Dec;176(24):4653-4665 [PMID: 31412133]
  43. Br J Pharmacol. 2013 May;169(2):357-70 [PMID: 23062057]
  44. Mol Pharmacol. 2014 Jul;86(1):96-105 [PMID: 24755247]
  45. Trends Pharmacol Sci. 2020 Dec;41(12):947-959 [PMID: 33097283]
  46. Neuropsychopharmacology. 2022 Mar;47(4):924-932 [PMID: 34802041]
  47. Cell. 2020 Feb 20;180(4):655-665.e18 [PMID: 32004463]
  48. Neuron. 2008 Mar 27;57(6):883-93 [PMID: 18367089]
  49. Mol Psychiatry. 2002;7(3):234-5 [PMID: 11920149]
  50. J Neurosci. 2000 Apr 1;20(7):2470-9 [PMID: 10729327]
  51. Int J Legal Med. 2023 Jul;137(4):1059-1069 [PMID: 37072496]
  52. Crit Rev Toxicol. 2020 May;50(5):359-382 [PMID: 32530350]
  53. Mol Pharmacol. 2004 Mar;65(3):665-74 [PMID: 14978245]
  54. N Engl J Med. 2017 Jan 19;376(3):235-242 [PMID: 27973993]
  55. J Med Chem. 2012 May 10;55(9):4489-500 [PMID: 22500930]
  56. J Neurosci. 2010 Jan 13;30(2):545-55 [PMID: 20071517]

Grants

  1. K23 DA000523/NIDA NIH HHS
  2. T32 DA055553/NIDA NIH HHS
  3. ZIA DA000606/Intramural NIH HHS
  4. Z01 DA000487/Intramural NIH HHS
  5. Z01 DA000523/Intramural NIH HHS

MeSH Term

Humans
Cannabinoid Receptor Agonists
Receptor, Cannabinoid, CB1
Cannabinoids
Dronabinol
Receptor, Cannabinoid, CB2

Chemicals

Cannabinoid Receptor Agonists
5F-MDMB-PICA
Receptor, Cannabinoid, CB1
Cannabinoids
Dronabinol
Receptor, Cannabinoid, CB2

Word Cloud

Created with Highcharts 10.0.0SCRAsefficacyCB1Rcannabinoidreceptorhigherheadstructuralsyntheticpotencycompared1differencescantoxicbioluminescenceresonanceenergytransferproteinmoiety5F-MDMB-PICAchangesReceptoremergenceagonistsillicitpsychoactivesubstancesposedconsiderablepublichealthrisksincludingfatalitiesManyexhibitmuchphytocannabinoidΔ-tetrahydrocannabinolTHCleadingdramaticsignalinglevelsstudyinvestigatedstructure-activityrelationshipsaminoalkylindoleCB1Rsfocusing5F-pentylindolescontainingamidelinkerattacheddifferentmoietiesUsingvitroassaysidentifiedexhibitingsignificantlyengagingGrecruitingβ-arrestinreferencefullagonistCP55940Importantlyextramethylgroup5F-MMB-PICAledlargeincreasepharmacologicalobservationsupportedfunctionaleffectsglutamatefieldpotentialsrecordedhippocampalslicesMolecularmodelingsimulationsmodelsboundrevealedcriticaldeterminantscontributingsubtlepropagatedreceptor-GinterfaceThusfindapparentlyminorcausemajorresultshighlightneedclosemonitoringmodificationsnewlyemergingpotentialdrugresponseshumansSubtleStructuralModificationSyntheticCannabinoidAgonistDrasticallyIncreasesEfficacyCB1moleculardynamicscannabinoids

Similar Articles

Cited By