Unstable environment of coastal lagoons drives genetic variation in the amphipod Quadrivisio lutzi.

Mariana Sampaio Xavier, Paulo Cesar Paiva, Laura Isabel Weber
Author Information
  1. Mariana Sampaio Xavier: Universidade Federal do Rio de Janeiro, Instituto de Biologia, Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Rio de Janeiro, RJ, Brazil. ORCID
  2. Paulo Cesar Paiva: Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Rio de Janeiro, RJ, Brazil. ORCID
  3. Laura Isabel Weber: Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Laboratório de Biologia Molecular, Macaé, RJ, Brazil. ORCID

Abstract

The freshwater/brackish amphipod Quadrivisio lutzi inhabits coastal lagoons, highly unstable environments subject to sudden inflow of marine water. Our aim was to evaluate how the genetic composition varies in these populations. Brazilian populations were compared by 16S rRNA and COI gene sequences. The genetic structure of four Rio de Janeiro amphipod populations was evaluated during the period of 2011-2019 by COI. Rio de Janeiro population was compared with Alagoas and São Paulo populations, which was genetically distinct, at species level (16S, d > 7%; COI, d >14%). The genetic structure in Rio de Janeiro showed the Imboassica subpopulation as the most divergent (Imboassica & Carapebus, F ST = 0.238), followed by Lagamar population (Lagamar & Carapebus, F ST = 0.049). The geographic distance and urbanization around these lagoons explain the degree of genetic isolation of these amphipod subpopulations. Paulista and Carapebus populations were not structured. Temporal variation in haplotype number and frequency were evident in both populations that were evaluated (Carapebus and Imboassica). Changes in salinity and water volume variation at these lagoons may be responsible for the observed changes in genetic composition, which may be the results of genetic drift effects over temporally fluctuating size subpopulations, without loss of genetic diversity.

References

  1. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967-71 [PMID: 109836]
  2. Genetica. 2010 Aug;138(8):895-906 [PMID: 20623364]
  3. Mol Phylogenet Evol. 2011 Feb;58(2):395-403 [PMID: 21167289]
  4. Braz J Biol. 2021 Dec 20;84:e250280 [PMID: 34932625]
  5. Mol Ecol Resour. 2010 May;10(3):564-7 [PMID: 21565059]
  6. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  7. Evolution. 2019 Jul;73(7):1341-1355 [PMID: 31148149]
  8. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  9. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 [PMID: 7881515]
  10. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  11. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  12. Zootaxa. 2018 Jun 08;4431(1):1-139 [PMID: 30313250]
  13. Genetics. 1997 Oct;147(2):915-25 [PMID: 9335623]
  14. Rev Biol Trop. 2007 Jun;55(2):479-98 [PMID: 19069761]
  15. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  16. Zool Stud. 2015 Apr 28;54:e38 [PMID: 31966125]
  17. Evolution. 1994 Dec;48(6):1986-2001 [PMID: 28565169]
  18. Evolution. 1992 Jun;46(3):608-615 [PMID: 28568658]
  19. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  20. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]

Word Cloud

Created with Highcharts 10.0.0geneticpopulationsamphipodlagoonsCarapebusCOIRiodeJaneiroImboassicavariationQuadrivisiolutzicoastalwatercompositioncompared16Sstructureevaluatedpopulationd&FST=0Lagamarsubpopulationsmayfreshwater/brackishinhabitshighlyunstableenvironmentssubjectsuddeninflowmarineaimevaluatevariesBrazilianrRNAgenesequencesfourperiod2011-2019AlagoasSãoPaulogeneticallydistinctspecieslevel>7%>14%showedsubpopulationdivergent238followed049geographicdistanceurbanizationaroundexplaindegreeisolationPaulistastructuredTemporalhaplotypenumberfrequencyevidentChangessalinityvolumeresponsibleobservedchangesresultsdrifteffectstemporallyfluctuatingsizewithoutlossdiversityUnstableenvironmentdrives

Similar Articles

Cited By