Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose.

Nicolas Dussex, Sara Kurland, Remi-André Olsen, Göran Spong, Göran Ericsson, Robert Ekblom, Nils Ryman, Love Dalén, Linda Laikre
Author Information
  1. Nicolas Dussex: Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden. nicolas.dussex@gmail.com. ORCID
  2. Sara Kurland: Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
  3. Remi-André Olsen: Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21, Solna, Sweden.
  4. Göran Spong: Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
  5. Göran Ericsson: Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
  6. Robert Ekblom: Wildlife Analysis Unit, Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden. ORCID
  7. Nils Ryman: Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
  8. Love Dalén: Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.
  9. Linda Laikre: Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden. linda.laikre@popgen.su.se. ORCID

Abstract

Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.

References

  1. Mol Biol Evol. 2020 Dec 16;37(12):3642-3653 [PMID: 32642779]
  2. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  3. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  4. Mol Phylogenet Evol. 2002 Mar;22(3):375-87 [PMID: 11884162]
  5. Curr Biol. 2019 Jan 7;29(1):165-170.e6 [PMID: 30595519]
  6. Bioinformatics. 2018 Jul 1;34(13):i142-i150 [PMID: 29949969]
  7. Nat Rev Genet. 2022 Aug;23(8):492-503 [PMID: 35136196]
  8. Science. 2022 May 6;376(6593):635-639 [PMID: 35511971]
  9. Nucleic Acids Res. 2010 Apr;38(6):e87 [PMID: 20028723]
  10. Mol Ecol. 2010 Mar;19 Suppl 1:277-84 [PMID: 20331786]
  11. Ecol Evol. 2016 Dec 20;7(1):305-319 [PMID: 28070294]
  12. Mol Ecol. 2022 Dec;31(24):6422-6439 [PMID: 36170147]
  13. G3 (Bethesda). 2017 Aug 7;7(8):2859-2870 [PMID: 28667018]
  14. Nat Rev Genet. 2009 Mar;10(3):195-205 [PMID: 19204717]
  15. Curr Biol. 2020 Oct 5;30(19):3871-3879.e7 [PMID: 32795436]
  16. Conserv Biol. 2021 Dec;35(6):1833-1849 [PMID: 34289517]
  17. Science. 2020 Mar 6;367(6482):1083-1085 [PMID: 32139534]
  18. Elife. 2020 Dec 04;9: [PMID: 33274714]
  19. Am J Phys Anthropol. 1998 Apr;105(4):539-43 [PMID: 9584894]
  20. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  21. Biol Rev Camb Philos Soc. 2022 Aug;97(4):1511-1538 [PMID: 35415952]
  22. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4259-63 [PMID: 7753793]
  23. Mol Ecol. 2021 Sep;30(17):4147-4154 [PMID: 34191374]
  24. Gigascience. 2015 Feb 25;4:7 [PMID: 25722852]
  25. J Environ Manage. 2020 Apr 15;260:110068 [PMID: 32090812]
  26. J Hered. 2011 Nov-Dec;102(6):770-81 [PMID: 21900210]
  27. Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot5448 [PMID: 20516186]
  28. Proc Natl Acad Sci U S A. 2021 Nov 30;118(48): [PMID: 34772759]
  29. Nat Commun. 2020 Feb 21;11(1):1001 [PMID: 32081890]
  30. Annu Rev Anim Biosci. 2023 Feb 15;11:93-114 [PMID: 36332644]
  31. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  32. Sci Adv. 2019 May 29;5(5):eaau0757 [PMID: 31149628]
  33. Evol Appl. 2022 Oct 31;15(12):1965-1966 [PMID: 36540641]
  34. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  35. Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1553-62 [PMID: 11127900]
  36. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19345-50 [PMID: 23134729]
  37. Mol Ecol. 1996 Feb;5(1):3-9 [PMID: 9147694]
  38. Trends Ecol Evol. 2016 Dec;31(12):940-952 [PMID: 27743611]
  39. Am J Hum Genet. 2012 Aug 10;91(2):275-92 [PMID: 22883143]
  40. Oecologia. 1995 Jun;102(4):433-442 [PMID: 28306886]
  41. Mol Ecol. 2019 Sep;28(17):3848-3856 [PMID: 31392753]
  42. Evol Appl. 2021 Apr 10;14(6):1540-1557 [PMID: 34178103]
  43. Trends Ecol Evol. 2022 Mar;37(3):197-202 [PMID: 35086739]
  44. Conserv Biol. 2023 Aug;37(4):e14064 [PMID: 36751982]
  45. Bioinformatics. 2013 Jul 01;29(13):1682-4 [PMID: 23613487]
  46. BMC Biol. 2017 Oct 30;15(1):98 [PMID: 29084517]
  47. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  48. Science. 2015 Apr 10;348(6231):242-245 [PMID: 25859046]
  49. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  50. Nat Commun. 2021 Apr 26;12(1):2393 [PMID: 33896938]
  51. Nature. 2003 Dec 11;426(6967):655-8 [PMID: 14668862]
  52. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  53. Biol Lett. 2019 Sep 27;15(9):20190491 [PMID: 31480938]
  54. Trends Ecol Evol. 2018 Mar;33(3):176-185 [PMID: 29289355]
  55. Trends Ecol Evol. 2019 Dec;34(12):1070-1079 [PMID: 31296345]
  56. Evol Appl. 2017 Dec 02;11(7):1035-1052 [PMID: 30026796]
  57. BMC Genomics. 2022 Nov 10;23(1):747 [PMID: 36357860]
  58. Mol Ecol. 2018 Oct;27(20):4041-4051 [PMID: 29802799]
  59. Nat Genet. 2017 Feb;49(2):303-309 [PMID: 28024154]
  60. Mol Ecol. 2016 Jan;25(1):238-59 [PMID: 26412233]
  61. BMC Bioinformatics. 2022 Jun 13;23(1):228 [PMID: 35698034]
  62. Nat Ecol Evol. 2020 Aug;4(8):1004-1006 [PMID: 32367032]
  63. Sci Adv. 2015 May 01;1(4):e1400103 [PMID: 26601172]
  64. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  65. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  66. Science. 2019 Jun 21;364(6446): [PMID: 31221830]
  67. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  68. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13596-13602 [PMID: 32482862]
  69. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  70. BMC Genomics. 2020 Dec 2;21(1):854 [PMID: 33267779]
  71. Cell Genom. 2021 Sep 08;1(1):100002 [PMID: 36777713]
  72. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  73. Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6089-E6096 [PMID: 28696295]
  74. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  75. Trends Ecol Evol. 2008 Jun;23(6):327-37 [PMID: 18439706]
  76. BMC Genomics. 2022 Feb 12;23(1):126 [PMID: 35151275]
  77. Trends Ecol Evol. 2023 Oct;38(10):961-969 [PMID: 37344276]
  78. Nature. 2011 Jul 13;475(7357):493-6 [PMID: 21753753]
  79. Trends Ecol Evol. 2012 Oct;27(10):578-84 [PMID: 22868005]
  80. Mol Ecol. 2022 Jul;31(13):3548-3565 [PMID: 35560856]
  81. Mol Ecol. 2021 Jan;30(1):62-82 [PMID: 33145846]

MeSH Term

Animals
Sweden
Genome
Genomics
Deer
Inbreeding

Word Cloud

Created with Highcharts 10.0.0temporalgenomicspeciesoverharvestinggenome-widediversitymoosemodernfoundnear-extinctionlocalvariationgenesUngulateexperiencedseveredeclinespastcenturieshabitatlossEvenmanygamerecoveredthanksstricthuntingregulationimpactsstillunclearexaminegeographicaldifferencesAlcesalceswholerangeSwedensequencing87historicalgenomeslimitedimpact1900seventinbreedingloadpopulationswellsuggestionriskfuturereductiongeneticgeneflowFurthermorecandidateadaptationrapidallelefrequencyshiftsinvolvingcodingsince1980spossiblydueselectiveharvestingresultshighlightchangespotentiallyimpactingfitnesscanoccurshorttimescalesunderlineneedtrackdeleteriousselectivelyadvantageousRange-wideanalysesrevealconsequencesSwedish

Similar Articles

Cited By