Short-term exposure to PM and 1.5 million deaths: a time-stratified case-crossover analysis in the Mexico City Metropolitan Area.

Iván Gutiérrez-Avila, Horacio Riojas-Rodríguez, Elena Colicino, Johnathan Rush, Marcela Tamayo-Ortiz, Víctor Hugo Borja-Aburto, Allan C Just
Author Information
  1. Iván Gutiérrez-Avila: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA. ivan_2c@hotmail.com.
  2. Horacio Riojas-Rodríguez: Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca Morelos, México.
  3. Elena Colicino: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
  4. Johnathan Rush: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
  5. Marcela Tamayo-Ortiz: Instituto Mexicano del Seguro Social, Unidad de Investigación en Salud Ocupacional, México City, México.
  6. Víctor Hugo Borja-Aburto: Instituto Mexicano del Seguro Social, México City, México.
  7. Allan C Just: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.

Abstract

BACKGROUND: Satellite-based PM predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in low and middle income countries. We aimed to explore the association between short-term exposure to PM with broad-category and cause-specific mortality outcomes in the Mexico City Metropolitan Area (MCMA), and potential effect modification by age, sex, and SES characteristics in such associations.
METHODS: We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from the MCMA for the period of 2004-2019. Daily 1 × 1 km PM (median = 23.4 μg/m; IQR = 13.6 μg/m) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Odds ratios were converted into percent increase for ease of interpretation.
RESULTS: PM exposure was associated with broad-category mortality outcomes, including all non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m PM higher cumulative exposure over one week (lag) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between age, sex and SES strata.
CONCLUSIONS: Exposure to PM was associated with non-accidental, broad-category and cause-specific mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indication of effect modification by individual-level characteristics.

Keywords

References

  1. Epidemiology. 2005 Nov;16(6):717-26 [PMID: 16222160]
  2. Int J Environ Res Public Health. 2019 Aug 18;16(16): [PMID: 31426599]
  3. Epidemiology. 2019 Nov;30(6):799-806 [PMID: 31430264]
  4. Sci Total Environ. 2021 Jun 10;772:145035 [PMID: 33581538]
  5. BMJ. 2019 Nov 27;367:l6258 [PMID: 31776122]
  6. JAMA Netw Open. 2019 Nov 1;2(11):e1915834 [PMID: 31747037]
  7. Ann Intern Med. 2017 Sep 19;167(6):424-431 [PMID: 28655034]
  8. Toxicol Res. 2014 Jun;30(2):65-70 [PMID: 25071914]
  9. Sci Rep. 2022 May 19;12(1):8471 [PMID: 35589851]
  10. Health Data Sci. 2021 Oct 7;2021:9870798 [PMID: 38487511]
  11. J Stat Softw. 2011 Jul;43(8):1-20 [PMID: 22003319]
  12. Environ Health Perspect. 2019 Dec;127(12):126002 [PMID: 31850801]
  13. Rev Panam Salud Publica. 2016 Sep;40(3):150-159 [PMID: 27991972]
  14. Environ Health Perspect. 1998 Dec;106(12):849-55 [PMID: 9831546]
  15. Sci Total Environ. 2021 Jun 1;771:144882 [PMID: 33736135]
  16. Toxicol Res. 2019 Nov 21;36(2):139-148 [PMID: 32257926]
  17. J Natl Med Assoc. 2007 Sep;99(9):1013-23 [PMID: 17913111]
  18. Epidemiology. 2001 Mar;12(2):186-92 [PMID: 11246579]
  19. BMJ. 2003 Jan 25;326(7382):219 [PMID: 12543843]
  20. Eur J Public Health. 2015 Feb;25(1):115-21 [PMID: 25161201]
  21. Environ Epidemiol. 2020 May 27;4(3):e094 [PMID: 32656489]
  22. J Expo Sci Environ Epidemiol. 2007 May;17(3):279-87 [PMID: 17006435]
  23. Environ Int. 2018 Feb;111:52-59 [PMID: 29174689]
  24. J Epidemiol Community Health. 2000 Oct;54(10):750-5 [PMID: 10990478]
  25. Ecotoxicol Environ Saf. 2023 Jul 1;259:115045 [PMID: 37235896]
  26. Thorax. 2014 Jul;69(7):660-5 [PMID: 24706041]
  27. N Engl J Med. 2019 Aug 22;381(8):705-715 [PMID: 31433918]
  28. Stroke. 2018 Jul;49(7):1734-1736 [PMID: 29895537]
  29. J Expo Sci Environ Epidemiol. 2022 Nov;32(6):917-925 [PMID: 36088418]
  30. Int J Climatol. 2021 Jun 30;41(8):4095-4111 [PMID: 34248276]
  31. Environ Res. 2023 Apr 15;223:115477 [PMID: 36781013]
  32. Environ Res. 2019 Mar;170:7-15 [PMID: 30554054]
  33. Environ Res. 2018 Feb;161:188-194 [PMID: 29154226]
  34. Int J Environ Res Public Health. 2019 Mar 06;16(5): [PMID: 30845676]
  35. Stat Med. 2010 Sep 20;29(21):2224-34 [PMID: 20812303]
  36. Environ Int. 2020 Sep;142:105876 [PMID: 32590284]
  37. Int J Environ Res Public Health. 2021 Dec 07;18(24): [PMID: 34948503]
  38. Environ Res Lett. 2022 May;17(5): [PMID: 35662857]
  39. Environ Int. 2020 Sep;142:105862 [PMID: 32599351]
  40. Environ Health Perspect. 2022 Jul;130(7):77006 [PMID: 35904519]
  41. Popul Health Metr. 2010 May 10;8:9 [PMID: 20459720]
  42. J Expo Sci Environ Epidemiol. 2015 Mar-Apr;25(2):138-44 [PMID: 24896768]
  43. BMC Public Health. 2015 Sep 29;15:985 [PMID: 26419739]
  44. NEJM Evid. 2022 Jul;1(7):EVIDra2200068 [PMID: 38319260]
  45. Epidemiology. 2008 Nov;19(6):810-9 [PMID: 18633327]
  46. Environ Res. 2020 Apr;183:109066 [PMID: 32058147]
  47. BMJ Med. 2022 Apr 12;1(1):e000009 [PMID: 36936557]
  48. Environ Health. 2022 Feb 08;21(1):24 [PMID: 35135544]
  49. Environ Health. 2020 Feb 17;19(1):20 [PMID: 32066433]
  50. Hum Exp Toxicol. 2022 Jan-Dec;41:9603271211069982 [PMID: 35174736]

Grants

  1. R01 ES031295/NIEHS NIH HHS
  2. R01ES031295/NIEHS NIH HHS
  3. UL1TR004419/NCATS NIH HHS
  4. UL1 TR004419/NCATS NIH HHS
  5. R01 ES032242/NIEHS NIH HHS
  6. P30 ES023515/NIEHS NIH HHS

MeSH Term

Humans
Air Pollutants
Air Pollution
Cross-Over Studies
Environmental Exposure
Mexico
Particulate Matter
Male
Female

Chemicals

Air Pollutants
Particulate Matter

Word Cloud

Created with Highcharts 10.0.0PM95%CI:]exposuremortalityoutcomes0includingrespiratorybroad-categorycause-specificeffectdiseasecardiovascularsystemspotentialindividual-levelassociationsagesexcharacteristicsnon-accidentalassociated[2usedcountriesacutehealthbeyondMexicoCityMetropolitanAreaMCMAmodificationSEStime-stratifiedcase-crossoverstudy1lagmodelsdigestivehigherheart[1[379%-6Short-term5BACKGROUND:Satellite-basedpredictionsadvancescienceair-pollutionepidemiologydevelopedemergingevidenceimpactsmodifyingeffectsfactorsResearchtopicslackinglowmiddleincomeaimedexploreassociationshort-termMETHODS:design479950deathsperiod2004-2019Daily1 × 1 kmmedian = 234 μg/mIQR = 136 μg/mestimatessatellite-basedregionalmodelemployedassessmentsub-municipalitylevelAssociationsorgan-systemestimateddistributedconditionallogisticalsofitstratifyingmodifiersindividualSES-relatednamely:educationinsurancecoveragejobcategoriesOddsratiosconvertedpercentincreaseeaseinterpretationRESULTS:cerebrovascular10-μg/mcumulativeoneweekhypertensive28%26%-433%ischemic61%59%-264%forms39%-035%-520%hemorrhagicstroke63%55%influenzapneumonia[491%284%-702%chronic49%71%-431%diseasesliver85%31%-341%renalfailure48%24%differencessizeobservedstrataCONCLUSIONS:Exposurespecificdeath-causesgenitourinaryindicationmilliondeaths:analysisCase-crossoverCause-specificPM2

Similar Articles

Cited By