Prioritizing conservation efforts based on future habitat availability and accessibility under climate change.

Jie Liang, Wanting Wang, Qing Cai, Xin Li, Ziqian Zhu, Yeqing Zhai, Xiaodong Li, Xiang Gao, Yuru Yi
Author Information
  1. Jie Liang: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China. ORCID
  2. Wanting Wang: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.
  3. Qing Cai: Hunan Research Academy of Environmental Sciences, Changsha, P.R. China.
  4. Xin Li: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.
  5. Ziqian Zhu: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.
  6. Yeqing Zhai: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.
  7. Xiaodong Li: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.
  8. Xiang Gao: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.
  9. Yuru Yi: College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China.

Abstract

The potential for species to shift their ranges to avoid extinction is contingent on the future availability and accessibility of habitats with analogous climates. To develop conservation strategies, many previous researchers used a single method that considered individual factors; a few combined 2 factors. Primarily, these studies focused on identifying climate refugia or climatically connected and spatially fixed areas, ignoring the range shifting process of animals. We quantified future habitat availability (based on species occurrence, climate data, land cover, and elevation) and accessibility (based on climate velocity) under climate change (4 scenarios) of migratory birds across the Yangtze River basin (YRB). Then, we assessed species' range-shift potential and identified conservation priority areas for migratory birds in the 2050s with a network analysis. Our results suggested that medium (i.e., 5-10 km/year) and high (i.e., ≥ 10 km/year) climate velocity would threaten 18.65% and 8.37% of stable habitat, respectively. Even with low (i.e., 0-5 km/year) climate velocity, 50.15% of climate-velocity-identified destinations were less available than their source habitats. Based on our integration of habitat availability and accessibility, we identified a few areas of critical importance for conservation, mainly in Sichuan and the middle to lower reaches of the YRB. Overall, we identified the differences between habitat availability and accessibility in capturing biological responses to climate change. More importantly, we accounted for the dynamic process of species' range shifts, which must be considered to identify conservation priority areas. Our method informs forecasting of climate-driven distribution shifts and conservation priorities.

Keywords

References

  1. Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545.
  2. Araujo, M. B., Cabeza, M., Thuiller, W., Hannah, L., & Williams, P. H. (2004). Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Global Change Biology, 10, 1618–1626.
  3. Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3, 327–338.
  4. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media. Available from https://doi.org/10.1136/qshc.2004.010033
  5. Batllori, E., Parisien, M.‐A., Parks, S. A., Moritz, M. A., & Miller, C. (2017). Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology, 23, 3219–3230.
  6. Brito‐Morales, I., Schoeman, D. S., Molinos, J. G., Burrows, M. T., Klein, C. J., Arafeh‐Dalmau, N., Kaschner, K., Garilao, C., Kesner‐Reyes, K., & Richardson, A. J. (2020). Climate velocity reveals increasing exposure of deep‐ocean biodiversity to future warming. Nature Climate Change, 10, 576–581.
  7. Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 24, 5318–5331.
  8. Carroll, C., Roberts, D. R., Michalak, J. L., Lawler, J. J., Nielsen, S. E., Stralberg, D., Hamann, A., Mcrae, B. H., & Wang, T. (2017). Scale‐dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Global Change Biology, 23, 4508–4520.
  9. Chen, I.‐C., Hill, J. K., Ohlemuller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.
  10. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. Inter Journal, Complex Systems, 1695, 1–9. Available from https://igraph.org
  11. D'Aloia, C. C., Naujokaitis‐Lewis, I., Blackford, C., Chu, C., Curtis, J. M. R., Darling, E., Guichard, F., Leroux, S. J., Martensen, A. C., Rayfield, B., Sunday, J. M., Xuereb, A., & Fortin, M.‐J. (2019). Coupled networks of permanent protected areas and dynamic conservation areas for biodiversity conservation under climate change. Frontiers in Ecology and Evolution, 7, 27.
  12. Dobrowski, S. Z., Abatzoglou, J., Swanson, A. K., Greenberg, J. A., Mynsberge, A. R., Holden, Z. A., & Schwartz, M. K. (2013). The climate velocity of the contiguous United States during the 20th century. Global Change Biology, 19, 241–251.
  13. Dobrowski, S. Z., & Parks, S. A. (2016). Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 7, 12349.
  14. Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt. Diversity and Distributions, 17, 43–57.
  15. Ferrier, S., & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404.
  16. Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.
  17. Hamann, A., & Aitken, S. N. (2013). Conservation planning under climate change: Accounting for adaptive potential and migration capacity in species distribution models. Diversity and Distributions, 19, 268–280.
  18. Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C., & Nielsen, S. E. (2015). Velocity of climate change algorithms for guiding conservation and management. Global Change Biology, 21, 997–1004.
  19. Heim, W., Heim, R. J., Beermann, I., Burkovskiy, O. A., Gerasimov, Y., Ktitorov, P., Ozaki, K., Panov, I., Sander, M. M., Sjöberg, S., Smirenski, S. M., Thomas, A., Tøttrup, A. P., Tiunov, I. M., Willemoes, M., Hölzel, N., Thorup, K., & Kamp, J. (2020). Using geolocator tracking data and ringing archives to validate citizen‐science based seasonal predictions of bird distribution in a data‐poor region. Global Ecology and Conservation, 24, e01215.
  20. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.
  21. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
  22. Huang, Q., Sauer, J. R., & Dubayah, R. O. (2017). Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Global Change Biology, 23, 3610–3622.
  23. IUCN. (2022). Guidelines for using the IUCN Red List categories and criteria. Version 15.1. Prepared by the Standards and Petitions Committee. Available from https://www.iucnredlist.org/documents/RedListGuidelines.pdf
  24. Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack robustness and centrality of complex networks. PLoS ONE, 8, e59613.
  25. Kenett, D. Y., Perc, M., & Boccaletti, S. (2015). Networks of networks—An introduction. Chaos, Solitons & Fractals, 80, 1–6.
  26. Kong, R., Zhang, Z., Zhang, F., Tian, J., Chang, J., Jiang, S., Zhu, B., & Chen, X. (2020). Increasing carbon storage in subtropical forests over the Yangtze River basin and its relation to major ecological projects. Science of the Total Environment, 709, 136163.
  27. Liang, J., Gao, X., Zeng, G., Hua, S., Zhong, M., Li, X., & Li, X. (2018a). Coupling Modern Portfolio Theory and Marxan enhances the efficiency of Lesser White‐fronted Goose's (Anser erythropus) habitat conservation. Scientific Reports, 8, 214.
  28. Liang, J., He, X., Zeng, G., Zhong, M., Gao, X., Li, X., Li, X., Wu, H., Feng, C., Xing, W., Fang, Y., & Mo, D. (2018b). Integrating priority areas and ecological corridors into national network for conservation planning in China. Science of the Total Environment, 626, 22–29.
  29. Liang, J., Peng, Y., Zhu, Z., Li, X., Xing, W., Li, X., Yan, M., & Yuan, Y. (2021). Impacts of changing climate on the distribution of migratory birds in China: Habitat change and population centroid shift. Ecological Indicators, 127, 107729.
  30. Littlefield, C. E., Krosby, M., Michalak, J. L., & Lawler, J. J. (2019). Connectivity for species on the move: Supporting climate‐driven range shifts. Frontiers in Ecology and the Environment, 17, 270–278.
  31. Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., & Chi, W. (2014). Spatiotemporal characteristics, patterns, and causes of land‐use changes in China since the late 1980s. Journal of Geographical Sciences, 24, 195–210.
  32. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462, 1052–1055.
  33. Luo, Y., Wu, J., Wang, X., Wang, Z., & Zhao, Y. (2020). Can policy maintain habitat connectivity under landscape fragmentation? A case study of Shenzhen, China. Science of the Total Environment, 715, 136829.
  34. Martinez‐Lopez, O., Koch, J. B., Martinez‐Morales, M. A., Navarrete‐Gutierrez, D., Enriquez, E., & Vandame, R. (2021). Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications. Global Change Biology, 27, 1772–1787.
  35. Martinez‐Meyer, E., Townsend, P. A., & Hargrove, W. W. (2004). Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity: Ecological niches as distributional constraints. Global Ecology and Biogeography, 13, 305–314.
  36. Mateo, R. G., De, L. A., Estrella, M., Felicísimo, Á. M., Muñoz, J., & Guisan, A. (2013). A new spin on a compositionalist predictive modelling framework for conservation planning: A tropical case study in Ecuador. Biological Conservation, 160, 150–161.
  37. McGuire, J. L., Lawler, J. J., McRae, B. H., Nunez, T. A., & Theobald, D. M. (2016). Achieving climate connectivity in a fragmented landscape. Proceedings of the National Academy of Sciences of the United States of America, 113, 7195–7200.
  38. Michalak, J. L., Stralberg, D., Cartwright, J. M., & Lawler, J. J. (2020). Combining physical and species‐based approaches improves refugia identification. Frontiers in Ecology and the Environment, 18, 254–260.
  39. Naimi, B., Capinha, C., Ribeiro, J., Rahbek, C., Strubbe, D., Reino, L., & Araújo, M. B. (2022). Potential for invasion of traded birds under climate and land‐cover change. Global Change Biology, 28, 5654–5666.
  40. Ni, J., Chen, Z. X., Dong, M., Chen, X. D., & Zhang, X. S. (1998). An ecogeographical regionalization for biodiversity in China. Acta Botanica Sinica, 40, 370–382.
  41. Ordonez, A., & Williams, J. W. (2013). Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecology Letters, 16, 773–781.
  42. Parks, S. A., Carroll, C., Dobrowski, S. Z., & Allred, B. W. (2020). Human land uses reduce climate connectivity across North America. Global Change Biology, 26, 2944–2955.
  43. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.
  44. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend, P. A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar: Predicting species distributions with low sample sizes. Journal of Biogeography, 34, 102–117.
  45. Phillips, S. J., Williams, P., Midgley, G., & Archer, A. (2008). Optimizing dispersal corridors for the Cape Proteaceae using network flow. Ecological Applications, 18, 1200–1211.
  46. Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39, 542–552.
  47. Rayfield, B., Fortin, M.‐J., & Fall, A. (2011). Connectivity for conservation: A framework to classify network measures. Ecology, 92, 847–858.
  48. Ren, Y., Lü, Y., Comber, A., Fu, B., Harris, P., & Wu, L. (2019). Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth‐Science Reviews, 190, 398–415.
  49. Santini, L., Cornulier, T., Bullock, J. M., Palmer, S. C. F., White, S. M., Hodgson, J. A., Bocedi, G., & Travis, J. M. J. (2016). A trait‐based approach for predicting species responses to environmental change from sparse data: How well might terrestrial mammals track climate change? Global Change Biology, 22, 2415–2424.
  50. Saupe, E. E., Farnsworth, A., Lunt, D. J., Sagoo, N., Pham, K. V., & Field, D. J. (2019). Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proceedings of the National Academy of Sciences, 116, 12895–12900.
  51. Schmitt, S., Pouteau, R., Justeau, D., Boissieu, F., & Birnbaum, P. (2017). ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution, 8, 1795–1803.
  52. Senior, R. A., Hill, J. K., & Edwards, D. P. (2019). Global loss of climate connectivity in tropical forests. Nature Climate Change, 9, 623–626.
  53. Shimazaki, H., Tamura, M., Darman, Y., Andronov, V., Parilov, M. P., Nagendran, M., & Higuchi, H. (2004). Network analysis of potential migration routes for Oriental White Storks (Ciconia boyciana). Ecological Research, 19, 683–698.
  54. Socolar, J. B., Epanchin, P. N., Beissinger, S. R., & Tingley, M. W. (2017). Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate‐driven range shifts. Proceedings of the National Academy of Sciences, 114, 12976–12981.
  55. Stralberg, D., Carroll, C., & Nielsen, S. E. (2020). Toward a climate‐informed North American protected areas network: Incorporating climate‐change refugia and corridors in conservation planning. Conservation Letters, 13, e12712.
  56. Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10, 1446.
  57. Tingley, M. W., Monahan, W. B., Beissinger, S. R., & Moritz, C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, 106, 19637–19643.
  58. UNEP‐WCMC, IUCN. (2023). Protected planet: The world database on protected areas (WDPA) and world database on other effective area‐based conservation measures (WD‐OECM). UNEP‐WCMC and IUCN. Available from http://www.protectedplanet.net
  59. Ureta, C., Ramírez‐Barrón, M., Sánchez‐García, E. A., Cuervo‐Robayo, A. P., Munguía‐Carrara, M., Mendoza‐Ponce, A., Gay, C., & Sánchez‐Cordero, V. (2022). Species, taxonomic, and functional group diversities of terrestrial mammals at risk under climate change and land‐use/cover change scenarios in Mexico. Global Change Biology, 28, 6992–7008.
  60. VanDerWal, J., Murphy, H. T., Kutt, A. S., Perkins, G. C., Bateman, B. L., Perry, J. J., & Reside, A. E. (2013). Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change, 3, 239–243.
  61. van Etten, J. (2017). R package gdistance: Distances and routes on geographical grids. Journal of Statistical Software, 76, 1–21.
  62. Vaz, L., Sousa, M. C., Gomez‐Gesteira, M., & Dias, J. M. (2021). A habitat suitability model for aquaculture site selection: Ria de Aveiro and Rias Baixas. Science of the Total Environment, 801, 149687.
  63. Wang, W., Fraser, J. D., & Chen, J. (2017). Wintering waterbirds in the middle and lower Yangtze River floodplain: Changes in abundance and distribution. Bird Conservation International, 27, 167–186.
  64. Xu, X., Huang, A., Belle, E., De Frenne, P., & Jia, G. (2022). Protected areas provide thermal buffer against climate change. Science Advances, 8, eabo0119.
  65. Xu, Y., Si, Y., Takekawa, J., Liu, Q., Prins, H. H. T., Yin, S., Prosser, D. J., Gong, P., & Boer, W. F. (2020). A network approach to prioritize conservation efforts for migratory birds. Conservation Biology, 34, 416–426.
  66. Zeferino, L. B., Souza, L., Amaral, C. H. D., Filho EI, F., & Oliveira, T. S. D. (2020). Does environmental data increase the accuracy of land use and land cover classification? International Journal of Applied Earth Observation and Geoinformation, 91, 102128.
  67. Zhang, S., Yang, P., Xia, J., Wang, W., Cai, W., Chen, N., Hu, S., Luo, X., Li, J., & Zhan, C. (2022). Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Science of the Total Environment, 833, 155238.
  68. Zhu, Z., Wang, K., Lei, M., Li, X., Li, X., Jiang, L., Gao, X., Li, S., & Liang, J. (2022). Identification of priority areas for water ecosystem services by a techno‐economic, social and climate change modeling framework. Water Research, 221, 118766.
  69. Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra‐Diaz, J. M., Thuiller, W., …, & Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43, 1261–1277.

Grants

  1. 51979101/National Natural Science Foundation of China
  2. 51679082/National Natural Science Foundation of China
  3. 2023RC1041/Science and Technology Innovation Program of Hunan Province

MeSH Term

Conservation of Natural Resources
Climate Change
Animals
Ecosystem
China
Birds
Animal Migration
Animal Distribution

Word Cloud

Created with Highcharts 10.0.0climateconservationhabitatavailabilityaccessibilityareasvelocitychangefuturebasedidentifiediepotentialspecieshabitatsmethodconsideredfactorsrangeprocessmigratorybirdsYRBspecies'prioritynetworkanalysisshiftsdelshiftrangesavoidextinctioncontingentanalogousclimatesdevelopstrategiesmanypreviousresearchersusedsingleindividualcombined2Primarilystudiesfocusedidentifyingrefugiaclimaticallyconnectedspatiallyfixedignoringshiftinganimalsquantifiedoccurrencedatalandcoverelevation4scenariosacrossYangtzeRiverbasinassessedrange-shift2050sresultssuggestedmedium5-10 km/yearhigh10 km/yearthreaten1865%837%stablerespectivelyEvenlow0-5 km/year5015%climate-velocity-identifieddestinationslessavailablesourceBasedintegrationcriticalimportancemainlySichuanmiddlelowerreachesOveralldifferencescapturingbiologicalresponsesimportantlyaccounteddynamicmustidentifyinformsforecastingclimate-drivendistributionprioritiesPrioritizingeffortsadaptaciónalcambioclimáticoanálisisderedesadaptationconectividadconnectivitysuitabilityidoneidadhábitatvelocidadclima气候速度生境适宜性网络分析连通性适应气候变化

Similar Articles

Cited By

No available data.