Metabolomics evaluation of the photochemical impact of violet-blue light (405 nm) on ex vivo platelet concentrates.

Jinchun Sun, Neetu Dahiya, Thomas Schmitt, Caitlin Stewart, John Anderson, Scott MacGregor, Michelle Maclean, Richard D Beger, Chintamani D Atreya
Author Information
  1. Jinchun Sun: Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA. Jinchun.Sun@fda.hhs.gov.
  2. Neetu Dahiya: Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
  3. Thomas Schmitt: Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
  4. Caitlin Stewart: The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
  5. John Anderson: The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
  6. Scott MacGregor: The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
  7. Michelle Maclean: The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
  8. Richard D Beger: Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
  9. Chintamani D Atreya: Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.

Abstract

INTRODUCTION: Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs.
METHOD: In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma).
RESULTS: The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.

Keywords

References

  1. Abe, A., Hiraoka, M., & Shayman, J. A. (2006). Positional specificity of lysosomal phospholipase A2. Journal of Lipid Research, 47(10), 2268–2279. [PMID: 16837646]
  2. Abonnenc, M., Crettaz, D., Marvin, L., Grund, B., Sonego, G., Bardyn, M., Tissot, J.-D., Prudent, M., Rochat, B., & Lion, N. (2016). Metabolomic profiling highlights oxidative damages in platelet concentrates treated for pathogen inactivation and shows protective role of urate. Metabolomics, 12, 188. [DOI: 10.1007/s11306-016-1136-0]
  3. Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism. Oxidative Medicine and Cellular Longevity, 2014, 1. [DOI: 10.1155/2014/360438]
  4. Bhutani, V. K., & Lamola, A. A. (2017). Mechanistic aspects of phototherapy for neonatal hyperbilirubinemia, fetal and neonatal physiology (5th ed.). Elsevier.
  5. Braune, S., Küpper, J.-H., & Jung, F. (2020). Effect of prostanoids on human platelet function: An overview. International Journal of Molecular Science, 21, 9020. [DOI: 10.3390/ijms21239020]
  6. Cooper, G. (2000). Structure of the plasma membrane, the cell: A molecular approach (2nd ed.). Oxford University Press.
  7. D’Alessandro, A., Thomas, K. A., Stefanoni, D., Gamboni, F., Shea, S. M., Reisz, J. A., & Spinella, P. C. (2020). Metabolic phenotypes of standard and cold-stored platelets. Transfusion, 60(Suppl 3), S96–S106. [PMID: 31880330]
  8. Diez, E., Chilton, F. H., Stroup, G., Mayer, R. J., Winkler, J. D., & Fonteh, A. N. (1994). Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. The Biochemical Journal, 301(Pt 3), 721–726. [PMID: 8053897]
  9. Escolar, G., Diaz-Ricart, M., & McCullough, J. (2022). Impact of different pathogen reduction technologies on the biochemistry, function, and clinical effectiveness of platelet concentrates: An updated view during a pandemic. Transfusion, 62(1), 227–246. [PMID: 34870335]
  10. Feys, H. B., Devloo, R., Sabot, B., De Pourcq, K., Coene, J., & Compernolle, V. (2017). High platelet content can increase storage lesion rates following intercept pathogen inactivation primarily in platelet concentrates prepared by apheresis. Vox Sanguinis, 112(8), 751–758. [PMID: 28960339]
  11. Feys, H. B., Van Aelst, B., & Compernolle, V. (2019). Biomolecular consequences of platelet pathogen inactivation methods. Transfusion Medicine Reviews, 33, 29–34. [PMID: 30021699]
  12. Hadley, J. B., Kelher, M. R., Coleman, J. R., Kelly, K. K., Dumont, L. J., Esparza, O., Banerjee, A., Cohen, M. J., Jones, K., & Silliman, C. C. (2022). Hormones, age, and sex affect platelet responsiveness in vitro. Transfusion, 62(9), 1882–1893. [PMID: 35929193]
  13. Ikeda, N., Nakashima, N., & Yoshihara, K. (1985). Observation of the ultraviolet-absorption spectrum of phenyl radical in the gas-phase. Journal of the American Chemical Society, 107(11), 3381–3382. [DOI: 10.1021/ja00297a073]
  14. Irsch, J., & Lin, L. (2011). Pathogen inactivation of platelet and plasma blood components for transfusion using the intercept blood system. Transfusion Medicine and Hemotherapy, 38(1), 19–31. [PMID: 21779203]
  15. Jana, S., Heaven, M. R., Dahiya, N., Stewart, C., Anderson, J., MacGregor, S., Maclean, M., Alayash, A. I., & Atreya, C. (2023). Antimicrobial 405 nm violet-blue light treatment of ex vivo human platelets leads to mitochondrial metabolic reprogramming and potential alteration of Phospho-proteome. Journal of Photochemistry and Photobiology b: Biology, 241, 112672. [PMID: 36871490]
  16. Jankowska, K. I., Nagarkatti, R., Acharyya, N., Dahiya, N., Stewart, C. F., Macpherson, R. W., Wilson, M. P., Anderson, J. G., MacGregor, S. J., Maclean, M., Dey, N., Debrabant, A., & Atreya, C. D. (2020). Complete inactivation of blood borne pathogen trypanosoma cruzi in stored human platelet concentrates and plasma treated with 405 nm violet-blue light. Frontiers in Medicine (lausanne), 7, 617373. [DOI: 10.3389/fmed.2020.617373]
  17. Johannsson, F., Arnason, N. A., Landro, R., Guethmundsson, S., Sigurjonsson, O. E., & Rolfsson, O. (2020). Metabolomics study of platelet concentrates photochemically treated with amotosalen and UVA light for pathogen inactivation. Transfusion, 60(2), 367–377. [PMID: 31802514]
  18. Kloeze, J. (1967). Influence of prostaglandins on platelet adhesiveness and platelet aggregation. Interscience Publishing Co.
  19. Lodish, H., Berk, A., & Zipursky, L. S. (2000). Biomembranes: Structural organization and basic functions. Scientific American Books.
  20. Maclean, M., Anderson, J. G., MacGregor, S. J., White, T., & Atreya, C. D. (2016). A new proof of concept in bacterial reduction: Antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma. Journal of Blood Transfusion, 2016, 2920514. [PMID: 27774337]
  21. Maclean, M., Gelderman, M. P., Kulkarni, S., Tomb, R. M., Stewart, C. F., Anderson, J. G., MacGregor, S. J., & Atreya, C. D. (2020). Non-ionizing 405 nm light as a potential bactericidal technology for platelet safety: Evaluation of in vitro bacterial inactivation and in vivo platelet recovery in severe combined immunodeficient mice. Frontiers in Medicine (lausanne), 6, 331. [DOI: 10.3389/fmed.2019.00331]
  22. Malvaux, N., Defraigne, F., Bartziali, S., Bellora, C., Mommaerts, K., Betsou, F., & Schuhmacher, A. (2022). In vitro comparative study of platelets treated with two pathogen-inactivation methods to extend shelf life to 7 days. Pathogens, 11(3), 343. [PMID: 35335667]
  23. Manne, B. K., Denorme, F., Middleton, E. A., Portier, I., Rowley, J. W., Stubben, C., Petrey, A. C., Tolley, N. D., Guo, L., Cody, M., Weyrich, A. S., Yost, C. C., Rondina, M. T., & Campbell, R. A. (2020). Platelet gene expression and function in patients with COVID-19. Blood, 136(11), 1317–1329. [PMID: 32573711]
  24. Marschner, S., & Goodrich, R. (2011). Pathogen reduction technology treatment of platelets, plasma and whole blood using riboflavin and UV Light. Transfusion Medicine and Hemotherapy, 38(1), 8–18. [PMID: 21779202]
  25. McQuilten, Z. K., Crighton, G., Brunskill, S., Morison, J. K., Richter, T. H., Waters, N., Murphy, M. F., & Wood, E. M. (2018). Optimal dose, timing and ratio of blood products in massive transfusion: Results from a systematic review. Transfusion Medicine Reviews, 32(1), 6–15. [PMID: 28803752]
  26. Moorhead, S., Maclean, M., Coia, J. E., MacGregor, S. J., & Anderson, J. G. (2016). Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe, 37, 72–77. [PMID: 26708703]
  27. Murphy, S., Sayar, S. N., & Gardner, F. H. (1970). Storage of platelet concentrates at 22 degrees C. Blood, 35(4), 549–557. [PMID: 4910186]
  28. Norman, A. W. (2008). From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. American Journal of Clinical Nutrition, 88(2), 491S-499S. [PMID: 18689389]
  29. Paglia, G., Sigurjonsson, O. E., Rolfsson, O., Valgeirsdottir, S., Hansen, M. B., Brynjolfsson, S., Gudmundsson, S., & Palsson, B. O. (2014). Comprehensive metabolomic study of platelets reveals the expression of discrete metabolic phenotypes during storage. Transfusion, 54(11), 2911–2923. [PMID: 24840017]
  30. Pang, Z., Zhou, G., Ewald, J., Chang, L., Hacariz, O., Basu, N., & Xia, J. (2022). Using metaboanalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols, 17, 1735–1761. [PMID: 35715522]
  31. Ragupathy, V., Haleyurgirisetty, M., Dahiya, N., Stewart, C., Anderson, J., MacGregor, S., Maclean, M., Hewlett, I., & Atreya, C. (2022). Visible 405 nm violet-blue light successfully inactivates HIV-1 in human plasma. Pathogens, 11(7), 778. [PMID: 35890023]
  32. Ramakrishnan, P., Maclean, M., MacGregor, S. J., Anderson, J. G., & Grant, M. H. (2016). Cytotoxic responses to 405 nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species. Toxicology in Vitro, 33, 54–62. [PMID: 26916085]
  33. Reikvam, H., Marschner, S., Apelseth, T. O., Goodrich, R., & Hervig, T. (2010). The Mirasol Pathogen Reduction Technology system and quality of platelets stored in platelet additive solution. Blood Transfusion, 8(3), 186–192. [PMID: 20671879]
  34. Seltsam, A., & Muller, T. H. (2011). UVC irradiation for pathogen reduction of platelet concentrates and plasma. Transfusion Medicine and Hemotherapy, 38(1), 43–54. [PMID: 21779205]
  35. Snyder, E., Raife, T., Lin, L., Cimino, G., Metzel, P., Rheinschmidt, M., Baril, L., Davis, K., Buchholz, D. H., Corash, L., & Conlan, M. G. (2004). Recovery and life span of 111indium-radiolabeled platelets treated with pathogen inactivation with amotosalen HCl (S-59) and ultraviolet A light. Transfusion, 44(12), 1732–1740. [PMID: 15584988]
  36. Stewart, C. F., Tomb, R. M., Ralston, H. J., Armstrong, J., Anderson, J. G., MacGregor, S. J., Atreya, C. D., & Maclean, M. (2022). Violet-blue 405-nm light-based photoinactivation for pathogen reduction of human plasma provides broad antibacterial efficacy without visible degradation of plasma proteins. Photochemistry and Photobiology, 98(2), 504–512. [PMID: 34935147]
  37. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3(3), 211–221. [PMID: 24039616]
  38. Tomb, R. M., Maclean, M., Coia, J. E., Graham, E., McDonald, M., Atreya, C. D., MacGregor, S. J., & Anderson, J. G. (2017). New proof-of-concept in viral inactivation: virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination. Food Environmental Virology, 9(2), 159–167. [PMID: 28040848]
  39. Triplett, D. A. (2000). Coagulation and bleeding disorders: Review and update. Clinical Chemistry, 46(8b), 1260–1269. [PMID: 10926920]
  40. Tselepis, A. D., Goudevenos, J. A., Tambaki, A. P., Michalis, L., Stroumbis, C. S., Tsoukatos, D. C., Elisaf, M., & Sideris, D. A. (1999). Platelet aggregatory response to platelet activating factor (PAF), ex vivo, and PAF-acetylhydrolase activity in patients with unstable angina: Effect of c7E3 Fab (abciximab) therapy. Cardiovascular Research, 43(1), 183–191. [PMID: 10536703]
  41. Tsoupras, A., Zabetakis, I., & Lordan, R. (2019). Platelet aggregometry assay for evaluating the effects of platelet agonists and antiplatelet compounds on platelet function in vitro. MethodsX, 6, 63–70. [PMID: 30619728]
  42. Van Aelst, B., Devloo, R., Zachee, P., t’Kindt, R., Sandra, K., Vandekerckhove, P., Compernolle, V., & Feys, H. B. (2016). Psoralen and ultraviolet a light treatment directly affects phosphatidylinositol 3-kinase signal transduction by altering plasma membrane packing. Journal of Biological Chemistry, 291(47), 24364–24376. [PMID: 27687726]
  43. Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Research, 50, D622–D631. [PMID: 34986597]
  44. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., … Querengesser, L. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521-526. [PMID: 17202168]
  45. Zimmerman, G. A., McIntyre, T. M., Prescott, S. M., & Stafforini, D. M. (2002). The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Critical Care Medicine, 30(5 Suppl), S294-301. [PMID: 12004251]

MeSH Term

Humans
Metabolomics
Blood Preservation
Reactive Oxygen Species
Blood Platelets
Light

Chemicals

Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0light405 nmplasmavivoPLTconcentratesviolet-blueexplateletevaluationpathogeninactivationPLTscanlevelsevaluatesafetreatmentmetabolomicsimpactbasicfunctionsmetabolitesoxygenspeciesROSexposureMetabolomicsINTRODUCTION:MicrobicidalvisiblespectrumhumanplateletsstoredResultsdatedemonstratedseveralblood-borneinfectiousdisease-causingpathogenssuccessfullyreducedsignificantlylowlight-treatedMETHOD:orderwhethermicrobicidalLC/MS-basedanalysesperformedoverallsuspendedidentifymetabolomechangesintra-plateletextra-cellularmediumieRESULTS:dataidentifiedactivatingfactorsPAFsagonistsprostaglandinsinfluenceintegrityactivationaggregationpotentialunalteredsuggestingilluminationregardingDistinctincreaseshydroxylfattyacidsaldehydeswelldecreasesantioxidantindicatedreactivegeneratedhighonehourDistinctlychangedendogenousphotosensitizer1 hprovidedgoodevidenceeffectivemicrobicideactingmechanismexternaladditivephotosensitizersrequiredphotochemicalExFunctionalconsequencesPathogenreductiontechnologiesReactiveViolet-blue

Similar Articles

Cited By