Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks.

Ashley T Sendell-Price, Frank J Tulenko, Mats Pettersson, Du Kang, Margo Montandon, Sylke Winkler, Kathleen Kulb, Gavin P Naylor, Adam Phillippy, Olivier Fedrigo, Jacquelyn Mountcastle, Jennifer R Balacco, Amalia Dutra, Rebecca E Dale, Bettina Haase, Erich D Jarvis, Gene Myers, Shawn M Burgess, Peter D Currie, Leif Andersson, Manfred Schartl
Author Information
  1. Ashley T Sendell-Price: Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden. ORCID
  2. Frank J Tulenko: Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
  3. Mats Pettersson: Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden. ORCID
  4. Du Kang: The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA. ORCID
  5. Margo Montandon: Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia. ORCID
  6. Sylke Winkler: Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany. ORCID
  7. Kathleen Kulb: Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
  8. Gavin P Naylor: Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
  9. Adam Phillippy: Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA. ORCID
  10. Olivier Fedrigo: Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA.
  11. Jacquelyn Mountcastle: Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
  12. Jennifer R Balacco: Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
  13. Amalia Dutra: Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
  14. Rebecca E Dale: Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
  15. Bettina Haase: Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA.
  16. Erich D Jarvis: Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA. ORCID
  17. Gene Myers: Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany. ORCID
  18. Shawn M Burgess: Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA. burgess@mail.nih.gov. ORCID
  19. Peter D Currie: Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia. peter.currie@monash.edu. ORCID
  20. Leif Andersson: Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden. leif.andersson@imbim.uu.se. ORCID
  21. Manfred Schartl: Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany. phch1@biozentrum.uni-wuerzburg.de. ORCID

Abstract

Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.

References

  1. Proc Biol Sci. 2008 Jan 7;275(1630):83-9 [PMID: 17956843]
  2. J Clin Oncol. 1998 Nov;16(11):3649-55 [PMID: 9817287]
  3. J Exp Biol. 2005 May;208(Pt 9):1611-9 [PMID: 15855392]
  4. Mol Biol Evol. 2019 Nov 1;36(11):2536-2547 [PMID: 31297530]
  5. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  6. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  7. Mol Ecol Resour. 2021 May;21(4):1359-1368 [PMID: 33453139]
  8. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  9. Nature. 2023 Mar;615(7951):285-291 [PMID: 36859541]
  10. Genome Biol. 2021 Apr 29;22(1):120 [PMID: 33910595]
  11. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4446-4455 [PMID: 30782839]
  12. Mol Biol Evol. 2022 May 3;39(5): [PMID: 35580068]
  13. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  14. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 [PMID: 16845043]
  15. Commun Biol. 2020 Nov 6;3(1):652 [PMID: 33159152]
  16. Nat Commun. 2023 Oct 19;14(1):6628 [PMID: 37857613]
  17. Science. 1976 Jul 2;193(4247):70-2 [PMID: 935859]
  18. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  19. Ecol Lett. 2010 Aug 1;13(8):1055-71 [PMID: 20528897]
  20. Biol Direct. 2008 May 21;3:20 [PMID: 18495041]
  21. J Natl Cancer Inst. 2010 Jun 16;102(12):859-65 [PMID: 20505152]
  22. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  23. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  24. J Fish Biol. 2012 Apr;80(5):991-1018 [PMID: 22497371]
  25. Nat Commun. 2017 May 09;8:15183 [PMID: 28485371]
  26. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  27. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  28. Sci Rep. 2020 Nov 9;10(1):19297 [PMID: 33168918]
  29. Nature. 2021 Apr;592(7856):737-746 [PMID: 33911273]
  30. Genome Res. 2022 Mar;32(3):583-594 [PMID: 35082141]
  31. Bioinformatics. 2020 Jun 1;36(12):3687-3692 [PMID: 32246826]
  32. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  33. Science. 1983 Sep 16;221(4616):1185-7 [PMID: 6193581]
  34. Nat Commun. 2020 May 15;11(1):2438 [PMID: 32415133]
  35. Expert Rev Mol Med. 2012 Jan 19;14:e10 [PMID: 22559283]
  36. Elife. 2017 Jun 30;6: [PMID: 28665273]
  37. Nat Biotechnol. 2018 Oct 22;: [PMID: 30346939]
  38. Gigascience. 2021 Jan 9;10(1): [PMID: 33420778]
  39. J Exp Zool. 1999 Oct 1;284(5):586-94 [PMID: 10469996]
  40. BMC Bioinformatics. 2021 Mar 6;22(1):109 [PMID: 33676403]
  41. Nat Ecol Evol. 2018 Nov;2(11):1761-1771 [PMID: 30297745]
  42. Trends Genet. 2010 Aug;26(8):345-52 [PMID: 20594608]
  43. Nat Methods. 2022 Jun;19(6):696-704 [PMID: 35361932]
  44. Dev Dyn. 2018 May;247(5):712-723 [PMID: 29396887]
  45. PLoS Comput Biol. 2019 Aug 21;15(8):e1007273 [PMID: 31433799]
  46. Bioinformatics. 2020 May 1;36(9):2896-2898 [PMID: 31971576]
  47. Nature. 1992 May 14;357(6374):153-5 [PMID: 1579163]
  48. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  49. Proc Biol Sci. 2008 Jan 22;275(1631):181-6 [PMID: 17971323]
  50. Cancer Res. 2004 Dec 1;64(23):8485-91 [PMID: 15574750]
  51. Cancer. 2005 Jul 1;104(1):176-82 [PMID: 15912493]
  52. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087-91 [PMID: 8483925]
  53. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  54. Acta Oncol. 1998;37(5):441-5 [PMID: 9831372]
  55. J Mol Evol. 1977 Apr 29;9(2):159-80 [PMID: 864721]
  56. Mol Ecol. 2021 Dec;30(23):6087-6100 [PMID: 34062029]

Grants

  1. ZIA HG200386/Intramural NIH HHS

MeSH Term

Animals
Mutation Rate
Sharks
Ecosystem

Word Cloud

Created with Highcharts 10.0.0mutationratelowlineageratesnuclearestimateepaulettepervertebratesharksSharksoccupydiverseecologicalnichesplaycriticalrolesmarineecosystemsoftenactingapexpredatorsconsideredslow-evolvingsuggestedexhibitexceptionallycancertwofeaturesexplainedprovidedirectsharkHemiscylliumocellatumgeneratehigh-qualityreferencegenomeresequencewholegenomesparentsnineoffspringdetectdenovomutationsUsingstringentcriteria7×10basepairgenerationrepresentsonelowestdirectlyestimatedcladeindicatingbasalgroupindeedslowlyevolvingwhoseabilityrestoregeneticdiversityfollowingsustainedpopulationbottleneckmayhamperedLowconsistentslowevolution

Similar Articles

Cited By