Event-driven adaptive optical neural network.

Frank Br��ckerhoff-Pl��ckelmann, Ivonne Bente, Marlon Becker, Niklas Vollmar, Nikolaos Farmakidis, Emma Lomonte, Francesco Lenzini, C David Wright, Harish Bhaskaran, Martin Salinga, Benjamin Risse, Wolfram H P Pernice
Author Information
  1. Frank Br��ckerhoff-Pl��ckelmann: Physical Institute, University of M��nster, Heisenbergstra��e 11, 48149 M��nster, Germany. ORCID
  2. Ivonne Bente: Physical Institute, University of M��nster, Heisenbergstra��e 11, 48149 M��nster, Germany. ORCID
  3. Marlon Becker: Institute for Geoinformatics, University of M��nster, Heisenbergstra��e 2, 48149 M��nster, Germany.
  4. Niklas Vollmar: Institute of Materials Physics, University of M��nster, Wilhelm-Klemm-Stra��e 10, 48149 M��nster, Germany.
  5. Nikolaos Farmakidis: Department of Material, University of Oxford, Parks Road, Oxford OX1 3PH, UK. ORCID
  6. Emma Lomonte: Physical Institute, University of M��nster, Heisenbergstra��e 11, 48149 M��nster, Germany. ORCID
  7. Francesco Lenzini: Physical Institute, University of M��nster, Heisenbergstra��e 11, 48149 M��nster, Germany. ORCID
  8. C David Wright: Department of Engineering, University of Exeter, North Park Road, Exeter EX4 4QF, UK. ORCID
  9. Harish Bhaskaran: Department of Material, University of Oxford, Parks Road, Oxford OX1 3PH, UK. ORCID
  10. Martin Salinga: Institute of Materials Physics, University of M��nster, Wilhelm-Klemm-Stra��e 10, 48149 M��nster, Germany. ORCID
  11. Benjamin Risse: Institute for Geoinformatics, University of M��nster, Heisenbergstra��e 2, 48149 M��nster, Germany. ORCID
  12. Wolfram H P Pernice: Physical Institute, University of M��nster, Heisenbergstra��e 11, 48149 M��nster, Germany. ORCID

Abstract

We present an adaptive optical neural network based on a large-scale event-driven architecture. In addition to changing the synaptic weights (synaptic plasticity), the optical neural network's structure can also be reconfigured enabling various functionalities (structural plasticity). Key building blocks are wavelength-addressable artificial neurons with embedded phase-change materials that implement nonlinear activation functions and nonvolatile memory. Using multimode focusing, the activation function features both excitatory and inhibitory responses and shows a reversible switching contrast of 3.2 decibels. We train the neural network to distinguish between English and German text samples via an evolutionary algorithm. We investigate both the synaptic and structural plasticity during the training process. On the basis of this concept, we realize a large-scale network consisting of 736 subnetworks with 16 phase-change material neurons each. Overall, 8398 neurons are functional, highlighting the scalability of the photonic architecture.

References

  1. Opt Lett. 2017 Apr 15;42(8):1560-1563 [PMID: 28409798]
  2. Nature. 2022 Jun;606(7914):501-506 [PMID: 35650432]
  3. Nat Mater. 2018 Aug;17(8):681-685 [PMID: 29915424]
  4. Sci Adv. 2022 Jun 3;8(22):eabn3243 [PMID: 35648858]
  5. Front Mol Neurosci. 2019 Jul 03;12:168 [PMID: 31333413]
  6. Sci Adv. 2017 Sep 27;3(9):e1700160 [PMID: 28959725]
  7. Nat Comput Sci. 2022 Jan;2(1):10-19 [PMID: 38177712]
  8. Front Neurosci. 2022 Feb 24;16:795876 [PMID: 35281488]
  9. Nature. 2022 Jan;601(7894):549-555 [PMID: 35082422]
  10. Nature. 2021 Jan;589(7840):44-51 [PMID: 33408378]
  11. Nature. 2019 May;569(7755):208-214 [PMID: 31068721]
  12. Opt Express. 2019 Aug 19;27(17):24724-24737 [PMID: 31510357]
  13. Sci Adv. 2019 Feb 15;5(2):eaau5759 [PMID: 30793028]
  14. Nature. 2021 Jan;589(7840):52-58 [PMID: 33408373]

Word Cloud

Created with Highcharts 10.0.0neuralnetworkopticalsynapticplasticityneuronsadaptivelarge-scalearchitecturestructuralphase-changeactivationpresentbasedevent-drivenadditionchangingweightsnetwork'sstructurecanalsoreconfiguredenablingvariousfunctionalitiesKeybuildingblockswavelength-addressableartificialembeddedmaterialsimplementnonlinearfunctionsnonvolatilememoryUsingmultimodefocusingfunctionfeaturesexcitatoryinhibitoryresponsesshowsreversibleswitchingcontrast32decibelstraindistinguishEnglishGermantextsamplesviaevolutionaryalgorithminvestigatetrainingprocessbasisconceptrealizeconsisting736subnetworks16materialOverall8398functionalhighlightingscalabilityphotonicEvent-driven

Similar Articles

Cited By (1)