Racial differences in healthcare expenditures for prevalent multimorbidity combinations in the USA: a cross-sectional study.

Manal Alshakhs, Patricia J Goedecke, James E Bailey, Charisse Madlock-Brown
Author Information
  1. Manal Alshakhs: Health Outcomes and Policy Program, University of Tennessee Health Science Center, Memphis, TN, USA.
  2. Patricia J Goedecke: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
  3. James E Bailey: Center for Health System Improvement, University of Tennessee Health Science Center, Memphis, TN, USA.
  4. Charisse Madlock-Brown: Health Outcomes and Policy Program, University of Tennessee Health Science Center, Memphis, TN, USA. cmadlock@uthsc.edu. ORCID

Abstract

BACKGROUND: We aimed to model total charges for the most prevalent multimorbidity combinations in the USA and assess model accuracy across Asian/Pacific Islander, African American, Biracial, Caucasian, Hispanic, and Native American populations.
METHODS: We used Cerner HealthFacts data from 2016 to 2017 to model the cost of previously identified prevalent multimorbidity combinations among 38 major diagnostic categories for cohorts stratified by age (45-64 and 65 +). Examples of prevalent multimorbidity combinations include lipedema with hypertension or hypertension with diabetes. We applied generalized linear models (GLM) with gamma distribution and log link function to total charges for all cohorts and assessed model accuracy using residual analysis. In addition to 38 major diagnostic categories, our adjusted model incorporated demographic, BMI, hospital, and census division information.
RESULTS: The mean ages were 55 (45-64 cohort, N = 333,094) and 75 (65 + cohort, N = 327,260), respectively. We found actual total charges to be highest for African Americans (means $78,544 [45-64], $176,274 [65 +]) and lowest for Hispanics (means $29,597 [45-64], $66,911 [65 +]). African American race was strongly predictive of higher costs (p < 0.05 [45-64]; p < 0.05 [65 +]). Each total charge model had a good fit. With African American as the index race, only Asian/Pacific Islander and Biracial were non-significant in the 45-64 cohort and Biracial in the 65 + cohort. Mean residuals were lowest for Hispanics in both cohorts, highest in African Americans for the 45-64 cohort, and highest in Caucasians for the 65 + cohort. Model accuracy varied substantially by race when multimorbidity grouping was considered. For example, costs were markedly overestimated for 65 + Caucasians with multimorbidity combinations that included heart disease (e.g., hypertension + heart disease and lipidemia + hypertension + heart disease). Additionally, model residuals varied by age/obesity status. For instance, model estimates for Hispanic patients were highly underestimated for most multimorbidity combinations in the 65 + with obesity cohort compared with other age/obesity status groupings.
CONCLUSIONS: Our finding demonstrates the need for more robust models to ensure the healthcare system can better serve all populations. Future cost modeling efforts will likely benefit from factoring in multimorbidity type stratified by race/ethnicity and age/obesity status.

Keywords

References

  1. Risk Manag Healthc Policy. 2016 Jul 05;9:143-56 [PMID: 27462182]
  2. Gerontologist. 2007 Aug;47(4):423-37 [PMID: 17766664]
  3. BMC Public Health. 2015 Apr 23;15:415 [PMID: 25903064]
  4. J Health Econ. 2001 Jul;20(4):461-94 [PMID: 11469231]
  5. Sci Rep. 2022 Jun 11;12(1):9716 [PMID: 35690677]
  6. Mayo Clin Proc. 2014 Oct;89(10):1336-49 [PMID: 25220409]
  7. J Gerontol A Biol Sci Med Sci. 2017 Mar 1;72(3):355-361 [PMID: 28364543]
  8. BMJ. 2009 Jun 29;338:b2393 [PMID: 19564179]
  9. J Comorb. 2013 Oct 8;3:4-9 [PMID: 29090140]
  10. Expert Rev Pharmacoecon Outcomes Res. 2015;15(5):823-32 [PMID: 26400220]
  11. J Gen Intern Med. 2015 Jan;30(1):25-32 [PMID: 25127728]
  12. Front Public Health. 2021 Jan 21;8:607528 [PMID: 33553094]
  13. Pharmacoepidemiol Drug Saf. 2022 Jan;31(1):1-12 [PMID: 34623723]
  14. Med Care. 2022 Oct 1;60(10):768-774 [PMID: 35948351]
  15. Health Aff (Millwood). 2017 Apr 1;36(4):689-696 [PMID: 28373335]
  16. Circ Arrhythm Electrophysiol. 2020 Mar;13(3):e007988 [PMID: 32064914]
  17. AMA J Ethics. 2015 Nov 01;17(11):1046-52 [PMID: 26595246]
  18. J Gerontol B Psychol Sci Soc Sci. 2018 Jan 11;73(2):258-266 [PMID: 28658936]
  19. BMC Health Serv Res. 2016 Aug 17;16(1):394 [PMID: 27534391]
  20. BMJ. 2012 Sep 03;345:e5205 [PMID: 22945950]
  21. Lancet. 2017 Apr 8;389(10077):1431-1441 [PMID: 28402825]
  22. BMC Med. 2016 Jun 22;14(1):88 [PMID: 27328975]
  23. BMJ Open. 2015 Feb 03;5(2):e006413 [PMID: 25649210]
  24. BMJ Open. 2015 Apr 16;5(4):e007771 [PMID: 25882486]
  25. Int J Equity Health. 2013 Aug 20;12:69 [PMID: 23962201]
  26. Prev Chronic Dis. 2013 Apr 25;10:E61 [PMID: 23618541]
  27. Health Policy. 2019 Apr;123(4):427-434 [PMID: 30791988]
  28. Saudi J Anaesth. 2014 Nov;8(Suppl 1):S101-4 [PMID: 25538498]
  29. BMC Public Health. 2023 May 15;23(1):887 [PMID: 37189096]
  30. J Emerg Med. 2016 Apr;50(4):e203-14 [PMID: 26472609]

Grants

  1. R15 AG067232/NIA NIH HHS

MeSH Term

Humans
United States
Multimorbidity
Cross-Sectional Studies
Health Expenditures
Race Factors
Obesity
Hypertension
Heart Diseases

Word Cloud

Created with Highcharts 10.0.0modelmultimorbiditycombinationsAfricantotalprevalentAmerican45-64cohortstatuschargesaccuracyBiracialcohorts65 + cohorthighest[45-64][65 +]racecostsdiseaseage/obesityAsian/PacificIslanderHispanicpopulationscost38majordiagnosticcategoriesstratifiedhypertensionmodelsAmericansmeanslowestHispanicsp < 005residualsvariedhealthcareBACKGROUND:aimedUSAassessacrossCaucasianNativeMETHODS:usedCernerHealthFactsdata20162017previouslyidentifiedamongage65 +ExamplesincludelipedemadiabetesappliedgeneralizedlinearGLMgammadistributionloglinkfunctionassessedusingresidualanalysisadditionadjustedincorporateddemographicBMIhospitalcensusdivisioninformationRESULTS:meanages55N = 33309475N = 327260respectivelyfoundactual$78544$176274$29597$66911stronglypredictivehigherchargegoodfitindexnon-significantMeanCaucasiansModelsubstantiallygroupingconsideredexamplemarkedlyoverestimated65 + Caucasiansincludedhearteghypertension + heartlipidemia + hypertension + heartAdditionallyinstanceestimatespatientshighlyunderestimated65 + withobesitycomparedgroupingsCONCLUSIONS:findingdemonstratesneedrobustensuresystemcanbetterserveFuturemodelingeffortswilllikelybenefitfactoringtyperace/ethnicityRacialdifferencesexpendituresUSA:cross-sectionalstudyAgeEthnicitystratificationHealthcareMultimorbidityObesityRace

Similar Articles

Cited By

No available data.