Functional clustering of neuronal signals with FMM mixture models.

Cristina Rueda, Alejandro Rodríguez-Collado
Author Information
  1. Cristina Rueda: Department of Statistics and Operations Research, University of Valladolid, 47011 Valladolid, Spain.
  2. Alejandro Rodríguez-Collado: Department of Statistics and Operations Research, University of Valladolid, 47011 Valladolid, Spain.

Abstract

The identification of unlabeled neuronal electric signals is one of the most challenging open problems in neuroscience, widely known as Spike Sorting. Motivated to solve this problem, we propose a model-based approach within the mixture modeling framework for clustering oscillatory functional data called MixFMM. The core of the approach is the FMM (Frequency Modulated Möbius) waves, which are non-linear parametric time functions, flexible enough to describe different oscillatory patterns and simple enough to be estimated efficiently. In particular, specific model parameters describe the phase, amplitude and shape of the waveforms. A mixture model is defined using FMM waves as basic functions and gaussian errors, and an EM algorithm is proposed for estimating the parameters. Spike Sorting (SS) has received considerable attention in the literature, and different functional clustering approaches have been considered. We have conducted a fair comparative analysis of the MixFMM with three competitors. Two of them are traditional methods in functional clustering and widely used in Spike Sorting. The third is an approach that has proven superior to many others solving Spike Sorting problems. The datasets used for validation include benchmarking simulated and real cases. The internal and external validation indexes confirm a better performance of the MixFMM on real data sets against the three competitors and an outstanding performance in simulated data against traditional approaches.

Keywords

References

  1. Sci Rep. 2019 Mar 6;9(1):3627 [PMID: 30842459]
  2. J Am Stat Assoc. 2019;114(526):495-513 [PMID: 31235987]
  3. Biometrics. 2021 Sep;77(3):852-865 [PMID: 32749677]
  4. R J. 2016 Aug;8(1):289-317 [PMID: 27818791]
  5. PLoS One. 2019 Nov 22;14(11):e0225138 [PMID: 31756211]
  6. iScience. 2022 Nov 21;25(12):105617 [PMID: 36465104]
  7. Brain Res Bull. 2015 Oct;119(Pt B):106-17 [PMID: 25931392]
  8. Front Syst Neurosci. 2020 Jun 30;14:34 [PMID: 32714155]
  9. PLoS One. 2021 Jul 22;16(7):e0254152 [PMID: 34292948]
  10. J Neurosci Methods. 2014 Jan 30;222:47-55 [PMID: 24184059]
  11. Neuroscience. 2019 Aug 21;414:168-185 [PMID: 31299347]
  12. Nat Neurosci. 2004 May;7(5):446-51 [PMID: 15114356]
  13. Neural Comput. 2004 Aug;16(8):1661-87 [PMID: 15228749]
  14. Sci Rep. 2019 Dec 10;9(1):18701 [PMID: 31822685]
  15. Sci Rep. 2022 Sep 15;12(1):15504 [PMID: 36109581]
  16. Biometrics. 2017 Mar;73(1):324-333 [PMID: 27218696]
  17. Neural Netw. 2022 Nov;155:39-49 [PMID: 36041279]
  18. Front Hum Neurosci. 2021 Jul 26;15:684950 [PMID: 34381341]
  19. Adv Data Anal Classif. 2022;16(3):691-723 [PMID: 36043219]
  20. Clin Neurophysiol. 2017 Jul;128(7):1246-1254 [PMID: 28531810]
  21. Front Neuroinform. 2022 Jun 13;16:851024 [PMID: 35769832]
  22. Cell. 2020 Nov 12;183(4):935-953.e19 [PMID: 33186530]
  23. J Biol Rhythms. 2020 Oct;35(5):465-475 [PMID: 32536240]
  24. Sci Rep. 2021 Feb 12;11(1):3724 [PMID: 33580164]
  25. Elife. 2018 Mar 20;7: [PMID: 29557782]
  26. Front Neurosci. 2017 Jan 06;10:592 [PMID: 28111539]
  27. Sci Rep. 2018 Dec 12;8(1):17796 [PMID: 30542106]
  28. Nature. 2013 Dec 12;504(7479):272-6 [PMID: 24336286]
  29. J Neural Eng. 2020 Jan 24;17(1):016038 [PMID: 31561235]
  30. Curr Opin Neurobiol. 2019 Apr;55:90-96 [PMID: 30856552]

Word Cloud

Created with Highcharts 10.0.0SpikeclusteringSortingdataFMMsignalsapproachmixturefunctionalMixFMMneuronalproblemswidelyoscillatorywavesfunctionsenoughdescribedifferentmodelparametersapproachesanalysisthreecompetitorstraditionalusedvalidationsimulatedrealperformanceFunctionalmodelsidentificationunlabeledelectriconechallengingopenneuroscienceknownMotivatedsolveproblemproposemodel-basedwithinmodelingframeworkcalledcoreFrequencyModulatedMöbiusnon-linearparametrictimeflexiblepatternssimpleestimatedefficientlyparticularspecificphaseamplitudeshapewaveformsdefinedusingbasicgaussianerrorsEMalgorithmproposedestimatingSSreceivedconsiderableattentionliteratureconsideredconductedfaircomparativeTwomethodsthirdprovensuperiormanyotherssolvingdatasetsincludebenchmarkingcasesinternalexternalindexesconfirmbettersetsoutstandingModel-basedOscillatorysorting

Similar Articles

Cited By