Vector Symbolic Architectures as a Computing Framework for Emerging Hardware.

Denis Kleyko, Mike Davies, E Paxon Frady, Pentti Kanerva, Spencer J Kent, Bruno A Olshausen, Evgeny Osipov, Jan M Rabaey, Dmitri A Rachkovskij, Abbas Rahimi, Friedrich T Sommer
Author Information
  1. Denis Kleyko: Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA 94720, USA and also with the Intelligent Systems Lab at Research Institutes of Sweden, 16440 Kista, Sweden.
  2. Mike Davies: Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA.
  3. E Paxon Frady: Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA.
  4. Pentti Kanerva: Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA 94720, USA.
  5. Spencer J Kent: Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA 94720, USA.
  6. Bruno A Olshausen: Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA 94720, USA.
  7. Evgeny Osipov: Department of Computer Science Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
  8. Jan M Rabaey: Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley, CA 94720, USA.
  9. Dmitri A Rachkovskij: International Research and Training Center for Information Technologies and Systems, 03680 Kyiv, Ukraine, and with the Department of Computer Science Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
  10. Abbas Rahimi: IBM Research - Zurich, 8803 Rüschlikon, Switzerland.
  11. Friedrich T Sommer: Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA and also with the Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA 94720, USA.

Abstract

This article reviews recent progress in the development of the computing framework (also known as Hyperdimensional Computing). This framework is well suited for implementation in stochastic, emerging hardware and it naturally expresses the types of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article that the field-like algebraic structure of Vector Symbolic Architectures offers simple but powerful operations on high-dimensional vectors that can support all data structures and manipulations relevant to modern computing. In addition, we illustrate the distinguishing feature of Vector Symbolic Architectures, "computing in superposition," which sets it apart from conventional computing. It also opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. We sketch ways of demonstrating that Vector Symbolic Architectures are computationally universal. We see them acting as a framework for computing with distributed representations that can play a role of an abstraction layer for emerging computing hardware. This article serves as a reference for computer architects by illustrating the philosophy behind Vector Symbolic Architectures, techniques of distributed computing with them, and their relevance to emerging computing hardware, such as neuromorphic computing.

Keywords

References

  1. Science. 2018 Sep 7;361(6406):1004-1008 [PMID: 30049787]
  2. IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10993-10998 [PMID: 35333724]
  3. Neural Comput. 2018 Jun;30(6):1449-1513 [PMID: 29652585]
  4. Cogn Sci. 2020 Nov;44(11):e12904 [PMID: 33140517]
  5. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  6. Neural Comput. 2020 Dec;32(12):2311-2331 [PMID: 33080162]
  7. Sci Robot. 2019 May 15;4(30): [PMID: 33137724]
  8. IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3777-3783 [PMID: 32833655]
  9. Nature. 2019 Aug;572(7767):106-111 [PMID: 31367028]
  10. Science. 2012 Nov 30;338(6111):1202-5 [PMID: 23197532]
  11. Nat Commun. 2021 Apr 29;12(1):2468 [PMID: 33927202]
  12. Psychol Rev. 2007 Jan;114(1):1-37 [PMID: 17227180]
  13. IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2191-2204 [PMID: 34478381]
  14. Comput Intell Neurosci. 2015;2015:986574 [PMID: 25954306]
  15. Nat Mach Intell. 2020 Mar;2(3):181-191 [PMID: 38650843]
  16. Log J IGPL. 2015 Oct;23(2):141-173 [PMID: 26582967]
  17. IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2701-2713 [PMID: 34699370]
  18. Cogn Sci. 2016 May;40(4):782-821 [PMID: 26173464]
  19. Neural Comput. 2020 Dec;32(12):2332-2388 [PMID: 33080160]
  20. Behav Brain Sci. 2006 Feb;29(1):37-70; discussion 70-108 [PMID: 16542539]
  21. IEEE Trans Neural Netw. 1995;6(3):623-41 [PMID: 18263348]
  22. IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1688-1701 [PMID: 33351770]
  23. Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14464-14472 [PMID: 32518114]
  24. Philos Trans A Math Phys Eng Sci. 2018 Apr 28;376(2118): [PMID: 29555807]
  25. Nature. 2020 Oct;586(7829):378-384 [PMID: 33057220]
  26. Neural Comput. 2013 Aug;25(8):2038-78 [PMID: 23607563]
  27. Cognition. 1988 Mar;28(1-2):3-71 [PMID: 2450716]
  28. Nature. 1969 Jun 7;222(5197):960-2 [PMID: 5789326]
  29. Philos Trans R Soc Lond B Biol Sci. 2020 Feb 3;375(1791):20190304 [PMID: 31840585]
  30. Psychol Rev. 2021 Jan;128(1):104-124 [PMID: 32816508]
  31. Biol Cybern. 1980;36(1):19-31 [PMID: 7353062]
  32. IEEE Trans Neural Netw Learn Syst. 2016 Sep;27(9):1878-89 [PMID: 26285224]
  33. IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):5880-5898 [PMID: 29993669]
  34. Front Neuroinform. 2014 Jan 06;7:48 [PMID: 24431999]
  35. Cogn Sci. 2011 Jan-Feb;35(1):79-118 [PMID: 21428993]
  36. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18050-18059 [PMID: 31431524]
  37. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  38. Biol Cybern. 1984;51(3):201-4 [PMID: 6518181]
  39. Neuron. 2016 Oct 19;92(2):530-543 [PMID: 27764674]
  40. Elife. 2019 Aug 20;8: [PMID: 31429824]
  41. Sci Rep. 2022 Dec 17;12(1):21808 [PMID: 36528630]
  42. IEEE Trans Neural Netw. 1998;9(4):705-13 [PMID: 18252493]
  43. IEEE Trans Biomed Circuits Syst. 2022 Aug;16(4):524-534 [PMID: 35776812]
  44. Cogn Sci. 2016 Jul;40(5):1128-62 [PMID: 26235459]
  45. IEEE Trans Biomed Eng. 2020 Feb;67(2):601-613 [PMID: 31144620]

Grants

  1. R01 EB026955/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0computingVectorSymbolicArchitecturesframeworkemerginghardwarearticledistributedalsoComputingoperationsAIcandatastructuressuperpositionrepresentationsreviewsrecentprogressdevelopmentknownHyperdimensionalwellsuitedimplementationstochasticnaturallyexpressestypescognitiverequiredArtificialIntelligencedemonstratefield-likealgebraicstructureofferssimplepowerfulhigh-dimensionalvectorssupportmanipulationsrelevantmodernadditionillustratedistinguishingfeature"computing"setsapartconventionalopensdoorefficientsolutionsdifficultcombinatorialsearchproblemsinherentapplicationssketchwaysdemonstratingcomputationallyuniversalseeactingplayroleabstractionlayerservesreferencecomputerarchitectsillustratingphilosophybehindtechniquesrelevanceneuromorphicFrameworkEmergingHardwareTuringcompletenesshyperdimensionalvectorsymbolicarchitectures

Similar Articles

Cited By