Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy.

Tayler D Hill, Sunil Basnet, Hannah H Lepird, Blaze W Rightnowar, Sean D Moran
Author Information
  1. Tayler D Hill: School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA. ORCID
  2. Sunil Basnet: School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA. ORCID
  3. Hannah H Lepird: School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA. ORCID
  4. Blaze W Rightnowar: School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA. ORCID
  5. Sean D Moran: School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA. ORCID

Abstract

Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.

References

  1. Phys Chem Chem Phys. 2017 Jun 21;19(24):16144-16150 [PMID: 28604875]
  2. J Chem Phys. 2016 May 14;144(18):180901 [PMID: 27179464]
  3. Annu Rev Biochem. 2013;82:471-96 [PMID: 23746260]
  4. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2637-42 [PMID: 17296942]
  5. J Chem Phys. 2015 Jun 7;142(21):212427 [PMID: 26049447]
  6. J Am Chem Soc. 2012 Jan 25;134(3):1738-45 [PMID: 22171795]
  7. Annu Rev Phys Chem. 2020 Apr 20;71:267-288 [PMID: 32312192]
  8. Front Mol Biosci. 2022 Nov 28;9:1037445 [PMID: 36518847]
  9. J Biol Chem. 1998 Jun 19;273(25):15458-63 [PMID: 9624131]
  10. Science. 2004 Jan 9;303(5655):186-95 [PMID: 14716003]
  11. J Phys Chem A. 2012 Jan 12;116(1):282-9 [PMID: 22191993]
  12. PLoS One. 2013 Apr 11;8(4):e60553 [PMID: 23593243]
  13. Curr Opin Struct Biol. 2022 Aug;75:102434 [PMID: 35872562]
  14. J Chem Theory Comput. 2019 Mar 12;15(3):1924-1938 [PMID: 30730746]
  15. J Phys Chem Lett. 2014 Jun 5;5(11):1984-1993 [PMID: 24932380]
  16. Nat Chem. 2012 Jan 29;4(3):161-8 [PMID: 22354429]
  17. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8424-9 [PMID: 27339138]
  18. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8476-81 [PMID: 24912147]
  19. J Chem Phys. 2007 Sep 28;127(12):124503 [PMID: 17902917]
  20. Spectrochim Acta A Mol Biomol Spectrosc. 2006 Mar 1;63(3):544-9 [PMID: 16157505]
  21. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16159-63 [PMID: 21930950]
  22. Opt Express. 2020 Oct 26;28(22):33584-33602 [PMID: 33115018]
  23. Phys Chem Chem Phys. 2019 Jan 2;21(2):780-788 [PMID: 30548035]
  24. J Chem Phys. 2020 Oct 28;153(16):164309 [PMID: 33138413]
  25. Chem Rev. 2017 Aug 23;117(16):10726-10759 [PMID: 28060489]
  26. J Phys Chem B. 2013 May 2;117(17):5009-18 [PMID: 23537223]
  27. J Phys Chem A. 2013 Jul 25;117(29):6073-83 [PMID: 23687988]
  28. J Chem Phys. 2004 Jul 1;121(1):362-73 [PMID: 15260555]
  29. J Phys Chem A. 2018 Aug 30;122(34):6856-6863 [PMID: 30091602]
  30. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):706-11 [PMID: 22215585]
  31. Biochemistry. 2018 Jun 19;57(24):3299-3308 [PMID: 29608286]
  32. Sci Rep. 2020 Oct 15;10(1):17465 [PMID: 33060716]
  33. Phys Chem Chem Phys. 2018 May 30;20(21):14765-14777 [PMID: 29780979]
  34. Sci Rep. 2017 Aug 18;7(1):8744 [PMID: 28821854]
  35. Comput Struct Biotechnol J. 2018 Oct 13;16:421-434 [PMID: 30450166]
  36. Chem Rev. 2006 May;106(5):1737-56 [PMID: 16683752]
  37. J Phys Chem B. 2017 Jul 6;121(26):6380-6389 [PMID: 28590738]
  38. J Chem Phys. 2015 Nov 7;143(17):170901 [PMID: 26547148]
  39. Phys Chem Chem Phys. 2018 Aug 1;20(30):19906-19915 [PMID: 30019716]
  40. J Chem Phys. 2021 Oct 7;155(13):134502 [PMID: 34624983]
  41. Chem Sci. 2019 Aug 5;10(39):8981-8989 [PMID: 31762978]
  42. Acc Chem Res. 2015 Feb 17;48(2):466-73 [PMID: 25539442]
  43. J Phys Chem B. 2014 Jul 17;118(28):7715-29 [PMID: 24479585]
  44. J Phys Chem Lett. 2016 Jul 7;7(13):2507-11 [PMID: 27305279]
  45. Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17974-9 [PMID: 20876138]
  46. Sci Rep. 2016 Sep 06;6:32816 [PMID: 27595789]
  47. J Phys Chem B. 2012 Jan 26;116(3):1172-9 [PMID: 22176031]
  48. Nat Chem. 2013 Mar;5(3):174-81 [PMID: 23422558]
  49. J Phys Chem B. 2012 Nov 26;116(46):13705-12 [PMID: 23116486]
  50. Biochemistry. 2015 Jan 13;54(1):83-95 [PMID: 25347386]
  51. J Chem Phys. 2011 Aug 21;135(7):074502 [PMID: 21861571]
  52. Acc Chem Res. 2015 Feb 17;48(2):407-13 [PMID: 25539144]
  53. Nat Chem. 2012 Jan 29;4(3):169-76 [PMID: 22354430]
  54. Protein Sci. 2004 Dec;13(12):3314-21 [PMID: 15537750]
  55. Nat Commun. 2014 Jun 23;5:4150 [PMID: 24954722]
  56. J Am Chem Soc. 2011 Mar 23;133(11):3995-4004 [PMID: 21348488]
  57. J Phys Chem B. 2012 Jan 12;116(1):542-8 [PMID: 22126535]
  58. Anal Chem. 2015 Nov 17;87(22):11561-7 [PMID: 26523838]
  59. J Am Chem Soc. 2012 Mar 14;134(10):4842-9 [PMID: 22352398]
  60. J Comput Chem. 2008 Nov 15;29(14):2460-70 [PMID: 18470972]
  61. J Am Chem Soc. 2012 Nov 14;134(45):18705-12 [PMID: 23101613]
  62. Protein Sci. 2018 Jan;27(1):112-128 [PMID: 28836357]
  63. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20749-52 [PMID: 18093918]
  64. Biophys J. 2000 Dec;79(6):3244-57 [PMID: 11106628]
  65. J Phys Chem B. 2011 Sep 29;115(38):11294-304 [PMID: 21823631]
  66. Sci Rep. 2020 Oct 16;10(1):17587 [PMID: 33067552]
  67. J Chem Phys. 2023 Mar 21;158(11):114201 [PMID: 36948842]
  68. Arch Biochem Biophys. 2015 Sep 15;582:42-55 [PMID: 26087289]
  69. J Chem Phys. 2021 Jul 21;155(3):035102 [PMID: 34293882]
  70. ACS Catal. 2019 May 15;8(4):3532-3549 [PMID: 31157123]
  71. Chem Phys Lett. 2009 Feb 17;469(4-6):325-330 [PMID: 20622983]
  72. J Phys Chem B. 2016 May 5;120(17):4125-30 [PMID: 27070852]
  73. Opt Express. 2008 Oct 27;16(22):17420-8 [PMID: 18958024]
  74. J Am Chem Soc. 2005 Nov 30;127(47):16660-7 [PMID: 16305255]
  75. J Chem Phys. 2015 Jun 7;142(21):212441 [PMID: 26049461]
  76. J Chem Phys. 2010 Oct 7;133(13):134506 [PMID: 20942545]
  77. New J Phys. 2009 Oct 1;11:105046 [PMID: 20463848]
  78. ACS Catal. 2019 Dec 6;9(12):11199-11206 [PMID: 33996196]
  79. Nat Chem Biol. 2009 Aug;5(8):543-50 [PMID: 19620995]
  80. J Phys Chem A. 2018 Jan 25;122(3):780-787 [PMID: 29250947]
  81. Phys Chem Chem Phys. 2009 Feb 7;11(5):748-61 [PMID: 19290321]
  82. Opt Lett. 2007 Mar 15;32(6):713-5 [PMID: 17308611]
  83. J Phys Chem B. 2018 Mar 8;122(9):2587-2599 [PMID: 29095618]
  84. Chem Rev. 2017 Aug 23;117(16):10694-10725 [PMID: 28248491]
  85. Chem Rev. 2006 Aug;106(8):3210-35 [PMID: 16895325]
  86. J Chem Phys. 2010 Nov 7;133(17):174506 [PMID: 21054050]
  87. Proteins. 2017 Dec;85(12):2157-2161 [PMID: 28905418]
  88. J Chem Phys. 2012 Nov 14;137(18):184201 [PMID: 23163363]
  89. J Am Chem Soc. 2014 Jan 8;136(1):188-94 [PMID: 24341684]
  90. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11265-70 [PMID: 11562493]
  91. J Phys Chem Lett. 2011 Jun 27;2011(2):1672-1676 [PMID: 21769311]
  92. J Phys Chem A. 2019 Dec 12;123(49):10571-10581 [PMID: 31735035]
  93. J Phys Chem B. 2018 Aug 30;122(34):8122-8133 [PMID: 30067030]
  94. Annu Rev Phys Chem. 2015 Apr;66:717-38 [PMID: 25747112]
  95. Faraday Discuss. 2015;177:163-79 [PMID: 25605054]
  96. Front Chem. 2018 Mar 21;6:70 [PMID: 29619365]
  97. Chem Rev. 2004 Apr;104(4):1887-914 [PMID: 15080715]
  98. Front Mol Biosci. 2018 Jul 13;5:65 [PMID: 30057902]
  99. Phys Chem Chem Phys. 2016 Jul 21;18(27):18094-111 [PMID: 27326899]
  100. Proc Natl Acad Sci U S A. 2022 Feb 8;119(6): [PMID: 35115405]
  101. Biochemistry. 2019 Feb 12;58(6):438-449 [PMID: 30507164]
  102. Chem Rev. 2013 Aug 14;113(8):5817-47 [PMID: 23679868]
  103. J Phys Chem B. 2013 Dec 12;117(49):15804-11 [PMID: 23885811]
  104. J Chem Inf Model. 2020 Jul 27;60(7):3534-3545 [PMID: 32589419]
  105. Proteins. 2010 May 1;78(6):1339-75 [PMID: 20099310]
  106. Nat Struct Mol Biol. 2011 Sep 18;18(10):1102-8 [PMID: 21926991]
  107. Biochemistry. 2013 Mar 26;52(12):2012-20 [PMID: 23240765]

Grants

  1. R35 GM119818/NIGMS NIH HHS

MeSH Term

Spectrophotometry, Infrared
Catalytic Domain
Anisotropy
Water
Nitriles

Chemicals

Water
Nitriles

Word Cloud

Created with Highcharts 10.0.0substrateactiveanalogsultrafastdynamicssitemanystatealsomotionsdisorderbindingmodeshydration2DIRspectroscopyPhENRaryl-nitrilerevealfastEnzymesaccelerateratesbiomolecularreactionsordersmagnitudecomparedbulksolutionwidelyunderstoodcatalyticeffectarisescombinationpolarpre-organizationelectrostatictransitionstabilizationnumberrecentreportsimplicatedfemtosecond-picosecondtimescaleenzymaticactivityHowevercomplicationsarisingspatially-distributedoccurrencemultipleinfluencesolvent-exposedsitesstillconfoundexperimentalstudiesusetwo-dimensionalinfraredcovalently-tetheredexaminedynamicalpropertiespromiscuousPyrococcushorikoshiiene-reductasetwoconfigurationsmimickingproposed"inactive""reactive"MichaeliscomplexesSpectraldiffusionmeasurementsend-to-endtradeoffsub-psslow>5 psFermiresonantaryl-azidesenseinteractionscoupledoscillatorsdescribedLineshapequantumbeatanalysesprobescharacteristicscorrelatefrequencyfluctuationcorrelationfunctionsparametersdemonstratinganisotropyintrinsicpropertywater-exposedcountervailinggradientsreactantgroundmaintainednearinterfaceresultssuggestseveralplausiblefactorsleadingstate-selectiverateenhancementpromiscuitystudyhighlightsstrategydetectperturbationsvibrationaloutsidetransparentwindowmid-IRspectrummayextendedmacromolecularsystemsAnisotropicinterfacialenzymeobservedusingtethered

Similar Articles

Cited By

No available data.