An Ultraflexible Electrode Array for Large-Scale Chronic Recording in the Nonhuman Primate Brain.

Yixin Tian, Jiapeng Yin, Chengyao Wang, Zhenliang He, Jingyi Xie, Xiaoshan Feng, Yang Zhou, Tianyu Ma, Yang Xie, Xue Li, Tianming Yang, Chi Ren, Chengyu Li, Zhengtuo Zhao
Author Information
  1. Yixin Tian: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  2. Jiapeng Yin: Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China.
  3. Chengyao Wang: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  4. Zhenliang He: Lingang Laboratory, Shanghai, 200031, China.
  5. Jingyi Xie: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  6. Xiaoshan Feng: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  7. Yang Zhou: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  8. Tianyu Ma: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  9. Yang Xie: Lingang Laboratory, Shanghai, 200031, China.
  10. Xue Li: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  11. Tianming Yang: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  12. Chi Ren: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. ORCID
  13. Chengyu Li: Lingang Laboratory, Shanghai, 200031, China.
  14. Zhengtuo Zhao: Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. ORCID

Abstract

Single-unit (SU) recording in nonhuman primates (NHPs) is indispensible in the quest of how the brain works, yet electrodes currently used for the NHP brain are limited in signal longevity, stability, and spatial coverage. Using new structural materials, microfabrication, and penetration techniques, we develop a mechanically robust ultraflexible, 1 µm thin electrode array (MERF) that enables pial penetration and high-density, large-scale, and chronic recording of neurons along both vertical and horizontal cortical axes in the nonhuman primate brain. Recording from three monkeys yields 2,913 SUs from 1,065 functional recording channels (up to 240 days), with some SUs tracked for up to 2 months. Recording from the primary visual cortex (V1) reveals that neurons with similar orientation preferences for visual stimuli exhibited higher spike correlation. Furthermore, simultaneously recorded neurons in different cortical layers of the primary motor cortex (M1) show preferential firing for hand movements of different directions. Finally, it is shown that a linear decoder trained with neuronal spiking activity across M1 layers during monkey's hand movements can be used to achieve on-line control of cursor movement. Thus, the MERF electrode array offers a new tool for basic neuroscience studies and brain-machine interface (BMI) applications in the primate brain.

Keywords

References

  1. J Comp Neurol. 2006 May 10;496(2):202-13 [PMID: 16538675]
  2. Science. 2015 May 22;348(6237):906-10 [PMID: 25999506]
  3. Nat Rev Neurol. 2021 Feb;17(2):75-87 [PMID: 33244188]
  4. Science. 2021 May 21;372(6544):831-836 [PMID: 34016775]
  5. Neuron. 2021 Nov 3;109(21):3521-3534.e6 [PMID: 34644546]
  6. Elife. 2022 Nov 02;11: [PMID: 36321687]
  7. Neuroimage. 2021 Feb 1;226:117574 [PMID: 33221453]
  8. Brain Behav Evol. 2004;63(2):61-81 [PMID: 14685002]
  9. J Neural Eng. 2020 Apr 29;17(2):026036 [PMID: 32217819]
  10. Front Neurorobot. 2020 Oct 09;14:558987 [PMID: 33162885]
  11. Nat Biomed Eng. 2023 Apr;7(4):520-532 [PMID: 36192597]
  12. J Med Internet Res. 2019 Oct 31;21(10):e16194 [PMID: 31642810]
  13. J Vis Exp. 2019 Oct 4;(152): [PMID: 31633681]
  14. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5244-7 [PMID: 25571176]
  15. Neuron. 2020 Mar 4;105(5):934-946.e5 [PMID: 32135091]
  16. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11068-72 [PMID: 17569784]
  17. Nature. 1996 Oct 31;383(6603):815-9 [PMID: 8893005]
  18. Neurobiol Aging. 2012 Jan;33(1):200.e23-31 [PMID: 20801549]
  19. Science. 1986 Sep 26;233(4771):1416-9 [PMID: 3749885]
  20. Cell Rep. 2021 Sep 21;36(12):109743 [PMID: 34551285]
  21. Sci Transl Med. 2021 Oct 27;13(617):eabg6463 [PMID: 34705521]
  22. Adv Sci (Weinh). 2023 Nov;10(33):e2302333 [PMID: 37870175]
  23. Adv Sci (Weinh). 2018 Mar 10;5(6):1700625 [PMID: 29938162]
  24. Nature. 2006 Jul 13;442(7099):164-71 [PMID: 16838014]
  25. Nat Neurosci. 2021 Jan;24(1):140-149 [PMID: 33169030]
  26. Neuron. 2017 Sep 13;95(6):1381-1394.e6 [PMID: 28910621]
  27. Lancet. 2013 Feb 16;381(9866):557-64 [PMID: 23253623]
  28. Nat Rev Neurol. 2019 Mar;15(3):148-160 [PMID: 30683913]
  29. Nat Commun. 2021 Jun 17;12(1):3689 [PMID: 34140486]
  30. Nature. 2017 Nov 8;551(7679):232-236 [PMID: 29120427]
  31. J Physiol. 1968 Mar;195(1):215-43 [PMID: 4966457]
  32. Nature. 2011 Oct 05;479(7372):228-31 [PMID: 21976021]
  33. Front Bioeng Biotechnol. 2021 Dec 07;9:759711 [PMID: 34950640]
  34. J Neurosci Methods. 2006 May 15;153(1):86-94 [PMID: 16316688]
  35. Nature. 2008 Jun 19;453(7198):1098-101 [PMID: 18509337]
  36. IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41 [PMID: 16425835]
  37. J Neural Eng. 2019 Jun;16(3):035001 [PMID: 30736013]
  38. J Neurosci. 2008 Nov 26;28(48):12591-603 [PMID: 19036953]
  39. J Neurosci Methods. 2017 Jul 15;286:38-55 [PMID: 28512008]
  40. J Neural Eng. 2022 Dec 19;19(6): [PMID: 36215972]
  41. Nature. 2012 May 16;485(7398):372-5 [PMID: 22596161]
  42. Sci Rep. 2021 Jan 21;11(1):2028 [PMID: 33479289]
  43. Science. 2021 Apr 16;372(6539): [PMID: 33859006]
  44. Neuroimage. 2015 Aug 15;117:408-16 [PMID: 26037056]
  45. Neuron. 2019 Jul 17;103(2):292-308.e4 [PMID: 31171448]
  46. Science. 2019 May 3;364(6439):420 [PMID: 31048470]
  47. Cell Rep. 2023 Jun 27;42(6):112554 [PMID: 37235473]
  48. J Neural Eng. 2016 Aug;13(4):046006 [PMID: 27247248]
  49. Nature. 2021 May;593(7858):249-254 [PMID: 33981047]
  50. Neuron. 2017 Oct 11;96(2):505-520.e7 [PMID: 29024669]
  51. Sci Adv. 2017 Feb 15;3(2):e1601966 [PMID: 28246640]
  52. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10720-5 [PMID: 21659632]
  53. Front Neurosci. 2017 Mar 13;11:118 [PMID: 28348514]
  54. Nat Methods. 2014 Jun;11(6):670-6 [PMID: 24776634]
  55. Neuron. 2019 Jan 2;101(1):21-31.e5 [PMID: 30502044]
  56. J Neurophysiol. 2005 Jan;93(1):570-9 [PMID: 15229215]
  57. J Comp Neurol. 1974 Dec 1;158(3):267-93 [PMID: 4436456]
  58. Science. 2019 Apr 19;364(6437):255 [PMID: 31000656]
  59. Science. 2011 Mar 18;331(6023):1443-7 [PMID: 21415353]
  60. J Neural Eng. 2017 Jun;14(3):036010 [PMID: 28102825]
  61. J Neurosci. 2013 Nov 27;33(48):18855-66 [PMID: 24285892]
  62. Am J Physiol. 1977 May;232(5):E456-63 [PMID: 871155]
  63. Neuroinformatics. 2015 Jul;13(3):353-66 [PMID: 25682754]
  64. Med Eng Phys. 2008 Dec;30(10):1270-4 [PMID: 18692425]
  65. J Neural Eng. 2021 Feb 26;18(2): [PMID: 33418549]
  66. Neuroimage. 2014 Dec;103:502-510 [PMID: 25192655]

Grants

  1. 2022ZD0210300/National Science and Technology Innovation 2030 Major Program
  2. 2018SHZDZX05/Shanghai Municipal Science and Technology Major Project
  3. 2021SHZDZX/Shanghai Municipal Science and Technology Major Project
  4. LG202105-01-06/Lingang Laboratory

MeSH Term

Animals
Electrodes
Brain
Primates
Single-Cell Analysis

Word Cloud

Created with Highcharts 10.0.0braincortexrecordingnonhumanelectrodeneuronsRecordingvisualprimatesusednewpenetrationultraflexible1arrayMERFcorticalprimate2SUsprimarydifferentlayersmotorM1handmovementsbrain-machineSingle-unitSUNHPsindispensiblequestworksyetelectrodescurrentlyNHPlimitedsignallongevitystabilityspatialcoverageUsingstructuralmaterialsmicrofabricationtechniquesdevelopmechanicallyrobustµmthinenablespialhigh-densitylarge-scalechronicalongverticalhorizontalaxesthreemonkeysyields913065functionalchannels240daystrackedmonthsV1revealssimilarorientationpreferencesstimuliexhibitedhigherspikecorrelationFurthermoresimultaneouslyrecordedshowpreferentialfiringdirectionsFinallyshownlineardecodertrainedneuronalspikingactivityacrossmonkey'scanachieveon-linecontrolcursormovementThusofferstoolbasicneurosciencestudiesinterfaceBMIapplicationsUltraflexibleElectrodeArrayLarge-ScaleChronicNonhumanPrimateBraininterfacessingle-unitrecordingsarrays

Similar Articles

Cited By