The carbon balance of plants: economics, optimization, and trait spectra in a historical perspective.

Manuel T Lerdau, Russell K Monson, James R Ehleringer
Author Information
  1. Manuel T Lerdau: Departments of Environmental Sciences and of Biology, University of Virginia, Charlottesville, VA, 22903, USA. mlerdau@virginia.edu. ORCID
  2. Russell K Monson: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
  3. James R Ehleringer: Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA.

Abstract

Over fifty years have passed since the publication of Harold Mooney's formative paper, "The Carbon Balance of Plants" on pages 315-346 of Volume 3 (1972) of Annual Review of Ecology and Systematics. Arguably, the conceptual framework presented in that paper, and the work by Mooney and his students leading up to the paper, provided the foundational principles from which core disciplines emerged in plant economic theory, functional trait theory and, more generally, plant physiological ecology. Here, we revisit the primary impacts of those early discoveries to understand how researchers constructed major concepts in our understanding of plant adaptations, and where those concepts are likely to take us in the near future. The discipline of functional trait ecology, which is rooted in the principles of evolutionary and economic optimization, has captured the imagination of the plant physiological ecology research community, though its emphasis has shifted toward predicting species distributions and ecological roles across resource gradients. In the face of 'big-data' research pursuits that are revealing trait expression patterns at the cellular level and mass and energy exchange patterns at the planetary scale, an opportunity exists to reconnect the principles of plant carbon balance and evolutionary optimization with trait origins at the genetic and cellular scales and trait impacts at the global scale.

Keywords

References

  1. Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci 111:740–745. https://doi.org/10.1073/pnas.1315179111 [DOI: 10.1073/pnas.1315179111]
  2. Antonovics J (1980) The study of plant populations. Science 208:587–589. https://doi.org/10.1126/science.208.4444.58 [DOI: 10.1126/science.208.4444.58]
  3. Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482. https://doi.org/10.1016/j.tplants.2008.06.006 [DOI: 10.1016/j.tplants.2008.06.006]
  4. Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942. https://doi.org/10.1038/nature06069 [DOI: 10.1038/nature06069]
  5. Bai KD, He CX, Wan XC, Jiang DB (2015) Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AOB Plants. https://doi.org/10.1093/aobpla/plv064 [DOI: 10.1093/aobpla/plv064]
  6. Billings WD, Mooney HA (1968) Ecology of arctic and alpine pants. Biol Rev 43:481–529. https://doi.org/10.1111/j.1469-185X.1968.tb00968.x [DOI: 10.1111/j.1469-185X.1968.tb00968.x]
  7. Björkman O, Holmgren P (1963) Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiol Plant 16:889–914. https://doi.org/10.1111/j.1399-3054.1963.tb08366.x [DOI: 10.1111/j.1399-3054.1963.tb08366.x]
  8. Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants – an economic analogy. Ann Rev Ecol Syst 16:363–392. https://doi.org/10.1146/annurev.es.16.110185.002051 [DOI: 10.1146/annurev.es.16.110185.002051]
  9. Brooker R, Kikvidze Z, Pugnaire FI, Callaway RM, Choler P, Lortie CJ, Michalet R (2005) The importance of importance. Oikos 109:63–70. https://doi.org/10.1111/j.0030-1299.2005.13557.x [DOI: 10.1111/j.0030-1299.2005.13557.x]
  10. Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM et al (2018) Global trait–environment relationships of plant communities. Nature Ecol Evol 2:1906–1917. https://doi.org/10.1038/s41559-018-0699-8 [DOI: 10.1038/s41559-018-0699-8]
  11. Chapin FS III (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233–260. https://doi.org/10.1146/annurev.es.11.110180.001313 [DOI: 10.1146/annurev.es.11.110180.001313]
  12. Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species. Volume 1. Effect of varied environments on western North American plants. Carnegie Institution of Washington, Washington D.C., Publication 520
  13. Cody ML (1966) A general theory of clutch size. Evolution 20:174–184. https://doi.org/10.2307/2406571 [DOI: 10.2307/2406571]
  14. Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129. https://doi.org/10.1016/0022-5193(66)90188-3 [DOI: 10.1016/0022-5193(66)90188-3]
  15. Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. https://doi.org/10.1126/science.230.4728.895 [DOI: 10.1126/science.230.4728.895]
  16. Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol 31:471–505 [PMID: 756635]
  17. Crepin N, Rolland F (2019) SnRK1 activation, signaling, and networking for energy homeostasis Curr Opin Plant Biol 51: 29–36. https:// https://doi.org/10.1016/j.pbi.2019.03.006
  18. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304. https://doi.org/10.1658/1100-9233(2004)015%5B0295:tpttde%5D2.0.co;2 [DOI: 10.1658/1100-9233(2004)015%5B0295]
  19. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S et al (2016) The global spectrum of plant form and function. Nature 529:167–177. https://doi.org/10.1038/nature16489 [DOI: 10.1038/nature16489]
  20. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016) TOR signaling and nutrient sensing. Ann Rev Plant Biol 67:261–285. https://doi.org/10.1146/annurev-arplant-043014-114648 [DOI: 10.1146/annurev-arplant-043014-114648]
  21. Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish T (ed) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, pp 25–55
  22. Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström A, Dieckmann U et al (2020) Organizing principles for vegetation dynamics. Nat Plants 6:444–453. https://doi.org/10.1038/s41477-020-0655-x [DOI: 10.1038/s41477-020-0655-x]
  23. Fryde EB (1958) Review of The De Moneta of Nicholas Oresme and english mint documents (Nelson’s Mediaeval Texts; Charles Johnson, ed.). Medium Ævum 27:34–36 [DOI: 10.2307/43626716]
  24. Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J et al (2017) Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol Rev 92:1156–1178. https://doi.org/10.1111/brv.12275 [DOI: 10.1111/brv.12275]
  25. Gadgil M, Bossert WH (1970) Life historical consequences of natural selection. Am Nat 104:1–24. https://doi.org/10.1086/282637 [DOI: 10.1086/282637]
  26. Givnish T (1982) Adaptive significance of leaf height in forest herbs. Amer Nat 120:353–381. https://doi.org/10.1086/283995 [DOI: 10.1086/283995]
  27. Givnish TJ (1986) Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 171–213
  28. Givnish T, Vermeij GJ (1976) Sizes and shapes of liane leaves. Am Nat 110:743–778. https://doi.org/10.1086/283101 [DOI: 10.1086/283101]
  29. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc Roy Soc B 205:581–98. https://doi.org/10.1098/rspb.1979.0086 [DOI: 10.1098/rspb.1979.0086]
  30. Grace JB (1991) A clarification of the debate between Grime and Tilman. Func Ecol 5:583–587. https://doi.org/10.2307/2389475 [DOI: 10.2307/2389475]
  31. Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31. https://doi.org/10.1038/250026a0 [DOI: 10.1038/250026a0]
  32. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer Nat 111:1169–1194. https://doi.org/10.1086/283244 [DOI: 10.1086/283244]
  33. Grime JP (1979) Plant Strategies and Vegetation Processes. John Wiley & Son, Chichester, p 222
  34. Harper JL (1966) A darwinian approach to plant ecology. J Applied Ecol 4:267–290. https://doi.org/10.2307/2401336 [DOI: 10.2307/2401336]
  35. Harrison AT, Mooney HA (1971) Drought relationships and distribution of two Mediterranean-climate California plant communities. Ecology 52:869–875. https://doi.org/10.2307/1936035 [DOI: 10.2307/1936035]
  36. Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brannstrom A et al (2021) Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytol 231:2125–2141. https://doi.org/10.1111/nph.17558 [DOI: 10.1111/nph.17558]
  37. Hatch MD, Slack CR (1970) Photosynthetic-CO pathways. Ann Rev Plant Physiol 21:141–162. https://doi.org/10.1146/annurev.pp.21.060170.001041 [DOI: 10.1146/annurev.pp.21.060170.001041]
  38. Hutchinson GE (1944) Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters. Ecology 25:3–26. https://doi.org/10.2307/1930759 [DOI: 10.2307/1930759]
  39. Kattge J, Bonisch G, Diáz S, Lavorel S, Prentice I, Leadley P et al (2019) TRY plant trait database - enhanced coverage and open access. Glob Change Biol 26:119–188. https://doi.org/10.1111/gcb.14904 [DOI: 10.1111/gcb.14904]
  40. Kleyer M, Trinogga J, Cebrian-Piueras MA, Trenkamp A, Flojgaard C, Ejrnaes R et al (2019) Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. Plant Ecol 107:829–842. https://doi.org/10.1111/1365-2745.13066 [DOI: 10.1111/1365-2745.13066]
  41. Lavorel S, Grigulis K (2012) How fundamental functional trait relationships scale-up to tradeoffs and synergies in ecosystem services. J Ecol 100:128–140. https://doi.org/10.1111/j.1365-2745.2011.01914.x [DOI: 10.1111/j.1365-2745.2011.01914.x]
  42. Lewontin RC (1961) Evolution and the theory of games. J Theor Biol 1:382–403. https://doi.org/10.1016/0022-5193(61)90038-8 [DOI: 10.1016/0022-5193(61)90038-8]
  43. MacArthur RH (1962) Some generalized theorems on natural selection. Proc Natl Acad Sci USA 48:1893–1898. https://doi.org/10.1073/pnas.48.11.1893 [DOI: 10.1073/pnas.48.11.1893]
  44. MacArthur RH (1972) Geographical Ecology. Patterns in the Distribution of Species. Princeton University Press, Princeton
  45. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Amer Nat 100:603–609. https://doi.org/10.1086/282454 [DOI: 10.1086/282454]
  46. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge [DOI: 10.1017/CBO9780511806292]
  47. McWilliam M, Dornelas M, Alvarez-Noriega M, Baird AH, Connolly SR, Madin JS (2022) Net effects of life-history traits explain persistent differences in abundance among similar species. Ecology 104:e3863. https://doi.org/10.1002/ecy.3863 [DOI: 10.1002/ecy.3863]
  48. Meng Y, Zhang N, Li J, Shen X, Sheen J, Xiong Y (2022) TOR kinase, a GPS in the complex nutrient and hormonal signaling networks to guide plant growth and development. J Exp Bot 73:7041–7054. https://doi.org/10.1093/jxb/erac282 [DOI: 10.1093/jxb/erac282]
  49. Milner HW, Heisey WM, Nobs MA (1958) Physiology of climatic races. Carnegie Inst Wash Yearbook 57:266–270
  50. Mirmirani M, Oster G (1978) Competition, kin selection and evolutionary stable strategies. Theor Pop Biol 13:304–39. https://doi.org/10.1016/0040-5809(78)90049-7 [DOI: 10.1016/0040-5809(78)90049-7]
  51. Monsi M, Saeki T (1953) On the light factor in plant communities and its significance for carbohydrate production. Jap J Bot 14:22–52
  52. Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT (2022) Coordinated resource allocation to plant growth-defense tradeoffs. New Phytol 233:1051–1066. https://doi.org/10.1111/nph.17773 [DOI: 10.1111/nph.17773]
  53. Mooney HA (1972) The carbon balance of plants. Ann Rev Ecol Syst 3:315–346 [DOI: 10.1146/annurev.es.03.110172.001531]
  54. Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Mono 31:1–28. https://doi.org/10.2307/1950744 [DOI: 10.2307/1950744]
  55. Mooney HA, Dunn EL (1970) Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution 24:292–303. https://doi.org/10.2307/2406805 [DOI: 10.2307/2406805]
  56. Mooney HA, Dunn EL (1970) Photosynthetic systems of Mediterranean-climate shrubs and trees of California and Chile. Am Nat 104:447–453. https://doi.org/10.1086/282679 [DOI: 10.1086/282679]
  57. Mooney HA, Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Jain S, Johnson GB, Raven PH (eds) Topics in Plant Population Biology (Solbrig OT. Columbia Univ Press, Columbia, pp 316–337
  58. Mooney HA, Gulmon SL (1982) Constraints on leaf structure and function in reference to herbivory. BioScience 32:198–206. https://doi.org/10.2307/1308943 [DOI: 10.2307/1308943]
  59. Mooney HA, Kummerow J (1971) The comparative water economy of representative evergreen sclerophyll and drought deciduous shrubs of Chile. Botan Gazette 132:245–252. https://doi.org/10.1086/336587 [DOI: 10.1086/336587]
  60. Mooney HA, Ferrar PJ, Slatyer RO (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36:103–111. https://doi.org/10.1007/BF00344575 [DOI: 10.1007/BF00344575]
  61. Morrow PA, Mooney HA (1974) Drought adaptations in two California evergreen sclerophylls. Oecologia 15:205–222. https://doi.org/10.1007/BF00345178 [DOI: 10.1007/BF00345178]
  62. Onoda R, Onoda Y, Terashima I, Tholen D (2018) Leaf anatomy and function. In: Leaf: A Platform for Performing Photosynthesis (Adams WW, Terashima I, eds.). 44: 97–139. https:// https://doi.org/10.1007/978-3-319-93594-2_5
  63. Orians GH, Solbrig OT (1977) Cost-income model of leaves and roots with special reference to arid and semi-arid areas. Am Nat 111:677–690. https://doi.org/10.1086/283199 [DOI: 10.1086/283199]
  64. Parkhurst D, Loucks O (1972) Optimal leaf size in relation to environment. J Ecol 60:505–512. https://doi.org/10.2307/2258359 [DOI: 10.2307/2258359]
  65. Pierce S, Bottinelli A, Bassani I, Ceriani RM, Cerabolini BEL (2014) How well do seed production traits correlate with leaf traits and plant ecological strategies. Plant Ecol 215:1351–1359. https://doi.org/10.1007/s11258-014-0392-1 [DOI: 10.1007/s11258-014-0392-1]
  66. Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17:82–91. https://doi.org/10.1111/ele.12211 [DOI: 10.1111/ele.12211]
  67. Redfield, AC (1958) The biological control of chemical factors in the environment. Am Sci 46: 230A, 205–221. https://www.jstor.org/stable/27827150
  68. Reich PB (1993) Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: ‘The Blind Men and the Elephant retold.’ Funct Ecol 7:721–725. https://doi.org/10.2307/2390194 [DOI: 10.2307/2390194]
  69. Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211 [DOI: 10.1111/1365-2745.12211]
  70. Reich PB, Walters MB (1994) Photosynthesis-nitrogen relations in Amazonian tree species. 2. Variation in nitrogen vis-à-vis specific leaf area influences mass-based and area-based expressions. Oecologia 97:73–81. https://doi.org/10.1007/BF00317910 [DOI: 10.1007/BF00317910]
  71. Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86:16–24. https://doi.org/10.1007/BF00317383 [DOI: 10.1007/BF00317383]
  72. Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monographs 62:365–392. https://doi.org/10.2307/2937116 [DOI: 10.2307/2937116]
  73. Reich PB, Kloeppel BD, Ellsworth Walters MB (1995) Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia 104:24–30. https://doi.org/10.1007/BF00365558 [DOI: 10.1007/BF00365558]
  74. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci 94:13370–13374. https://doi.org/10.1073/pnas.94.25.13730 [DOI: 10.1073/pnas.94.25.13730]
  75. Reichstein M, Bahn M, Mahecha MD, Kattge J, Baldocchi DD (2014) Linking plant and ecosystem functional biogeography. Proc Natl Acad Sci USA 111:13697–13702. https://doi.org/10.1073/pnas.1216065111 [DOI: 10.1073/pnas.1216065111]
  76. Reiners WA (1986) Complementary models for ecosystems. Amer Nat. 127:59–73. https://doi.org/10.1086/284467 [DOI: 10.1086/284467]
  77. Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L et al (2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol 21:2711–2725. https://doi.org/10.1111/gcb.12870 [DOI: 10.1111/gcb.12870]
  78. Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Ann Rev Entmol 61:373–394. https://doi.org/10.1146/annurev-ento-010715-023851 [DOI: 10.1146/annurev-ento-010715-023851]
  79. Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418. https://doi.org/10.1016/S1369-5266(99)00014-X [DOI: 10.1016/S1369-5266(99)00014-X]
  80. Shipley B, De Bello F, Cornelissen JHC, Lalibertè E, Laughlin DC, Reich PB (2016) Reinforcing loose foundation stones in trait-based pant ecology. Oecologia 180:923–931. https://doi.org/10.1007/s00442-016-3549-x [DOI: 10.1007/s00442-016-3549-x]
  81. Simon HA (1959) Theories of decision making in economics and behavioral science. Am Econ Rev 49:253–283
  82. Slatyer RO (1967) Plant-water Relationships. Academic Press, New York, p 378
  83. Slobodkin LB, Rapoport A (1974) An optimal strategy of evolution. Quart Rev Biol 49:181–200. https://doi.org/10.1086/408082 [DOI: 10.1086/408082]
  84. Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149. https://doi.org/10.1111/j.1365-3040.2007.01708.x [DOI: 10.1111/j.1365-3040.2007.01708.x]
  85. Smith NG, Keenan TF, Prentice IC, Wang H, Wright IJ, Niinemets U et al (2019) Global photosynthetic capacity is optimized to the environment. Ecol Lett 22:506–517. https://doi.org/10.1111/ele.13210 [DOI: 10.1111/ele.13210]
  86. Solbrig OT, Jain S, Johnson GB, Raven PH (1979) Topics in Plant Population Biology. Columbia University Press, Columbia, p 590 [DOI: 10.7312/solb94410]
  87. Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM (2016) Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ 40:816–830. https://doi.org/10.1111/pce.12852 [DOI: 10.1111/pce.12852]
  88. Sterner RW, Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton Univ. Press, Princeton, p 464
  89. Tilman D (1982) Resource competition and community structure. Monographs in Population Biology. Princeton University Press, Princeton, p 296
  90. Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JHC, Kattge J, van Bodegom PM (2015) Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an Earth system model. Glob Change Biol 21:3074–3086. https://doi.org/10.1111/gcb.12871 [DOI: 10.1111/gcb.12871]
  91. Vitousek P (1977) The regulation of element concentrations in mountain streams in the northeastern United States. Ecol Monog 47:65–87. https://doi.org/10.2307/1942224 [DOI: 10.2307/1942224]
  92. Vitousek P, Reiners W (1975) Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376–381. https://doi.org/10.2307/1297148 [DOI: 10.2307/1297148]
  93. von Neumann J, Morgenstern O (1953) Theory of Games and Economic Behaviour. Princeton University Press, Princeton
  94. Walker TWN, Alexander JM, Allard P-M, Baines O, Baldy V, Bardgett RD et al (2022) Functional traits 2.0: the power of the metabolome for ecology. J Ecol 110:4–20. https://doi.org/10.1111/1365-2745.13826 [DOI: 10.1111/1365-2745.13826]
  95. Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268. https://doi.org/10.1016/j.tree.2006.02.004 [DOI: 10.1016/j.tree.2006.02.004]
  96. Wingler A (2018) Transitioning to the next phase: The role of sugar signaling throughout the plant life cycle. Plant Physiol 176:1075–1084. https://doi.org/10.1104/pp.17.01229 [DOI: 10.1104/pp.17.01229]
  97. Wolf A, Anderegg WRL, Pacala S (2016) Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc Natl Acad Sci USA 113:7222–7230. https://doi.org/10.1073/pnas.1615144113 [DOI: 10.1073/pnas.1615144113]
  98. Woodhouse A (2017) Who owns the money? Currency, property, and popular sovereignty in Nicole Oresme’s De moneta. Speculum 92:85–116. https://doi.org/10.1086/689839 [DOI: 10.1086/689839]
  99. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403 [DOI: 10.1038/nature02403]
  100. Züst T, Agrawal AA (2017) Trade-offs between plant growth and defense: an emerging mechanistic synthesis. Ann Rev Plant Biol 68:513–534. https://doi.org/10.1146/annurev-arplant-042916-040856 [DOI: 10.1146/annurev-arplant-042916-040856]

Grants

  1. 2005574/Division of Integrative Organismal Systems

MeSH Term

Humans
Carbon
Plant Leaves
Ecology
Plants
Phenotype

Chemicals

Carbon

Word Cloud

Created with Highcharts 10.0.0traitplantpaperprinciplesecologyoptimizationeconomictheoryfunctionalphysiologicalimpactsconceptsevolutionaryresearchpatternscellularscalecarbonbalancefiftyyearspassedsincepublicationHaroldMooney'sformative"TheCarbonBalancePlants"pages315-346Volume31972AnnualReviewEcologySystematicsArguablyconceptualframeworkpresentedworkMooneystudentsleadingprovidedfoundationalcoredisciplinesemergedgenerallyrevisitprimaryearlydiscoveriesunderstandresearchersconstructedmajorunderstandingadaptationslikelytakeusnearfuturedisciplinerootedcapturedimaginationcommunitythoughemphasisshiftedtowardpredictingspeciesdistributionsecologicalrolesacrossresourcegradientsface'big-data'pursuitsrevealingexpressionlevelmassenergyexchangeplanetaryopportunityexistsreconnectoriginsgeneticscalesglobalplants:economicsspectrahistoricalperspectiveLifespanNitrogenPhotosynthesisSpectrumTradeoffs

Similar Articles

Cited By

No available data.