Gene Expression Within a Human Choroidal Neovascular Membrane Using Spatial Transcriptomics.

Andrew P Voigt, Nathaniel K Mullin, Emma M Navratil, Miles J Flamme-Wiese, Li-Chun Lin, Todd E Scheetz, Ian C Han, Edwin M Stone, Budd A Tucker, Robert F Mullins
Author Information
  1. Andrew P Voigt: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  2. Nathaniel K Mullin: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  3. Emma M Navratil: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  4. Miles J Flamme-Wiese: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  5. Li-Chun Lin: University of Iowa Neuroscience Institute, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  6. Todd E Scheetz: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  7. Ian C Han: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  8. Edwin M Stone: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  9. Budd A Tucker: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
  10. Robert F Mullins: Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.

Abstract

Purpose: Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process.
Methods: To study how gene expression is altered in focal areas of pathology, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We performed differential expression to identify genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes.
Results: Within the area of neovascularization, endothelial cells demonstrated increased expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we investigated regional gene expression patterns within the macular neural retina and between the macular and peripheral choroid.
Conclusions: Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.

References

  1. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  2. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  3. Invest Ophthalmol Vis Sci. 2008 Jul;49(7):3115-20 [PMID: 18408176]
  4. Exp Eye Res. 2019 Jul;184:234-242 [PMID: 31075224]
  5. Hum Mol Genet. 2014 Aug 1;23(15):4001-14 [PMID: 24634144]
  6. Genome Med. 2022 Jun 27;14(1):68 [PMID: 35761361]
  7. Development. 2008 Jun;135(12):2193-202 [PMID: 18480158]
  8. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499 [PMID: 31501331]
  9. Hum Mol Genet. 2021 Jul 28;30(16):1543-1558 [PMID: 34014299]
  10. Cancer Cell. 2006 Jan;9(1):33-44 [PMID: 16413470]
  11. Arch Ophthalmol. 1984 Nov;102(11):1640-2 [PMID: 6208888]
  12. Cancer Res. 2015 Aug 1;75(15):3098-107 [PMID: 26081809]
  13. Exp Eye Res. 2014 Dec;129:93-106 [PMID: 25446321]
  14. Sci Rep. 2019 Mar 19;9(1):4858 [PMID: 30890724]
  15. Drug Des Devel Ther. 2016 Jun 02;10:1857-67 [PMID: 27330279]
  16. Nat Rev Mol Cell Biol. 2007 Nov;8(11):857-69 [PMID: 17895899]
  17. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  18. Ophthalmol Retina. 2023 Aug;7(8):661-671 [PMID: 37086257]
  19. Eye (Lond). 2015 Oct;29(10):1397-8 [PMID: 26446737]
  20. Invest Ophthalmol Vis Sci. 2000 Sep;41(10):3158-64 [PMID: 10967078]
  21. Ophthalmol Retina. 2020 Jul;4(7):651-661 [PMID: 32335033]
  22. Retina. 2009 Jun;29(6):723-31 [PMID: 19516114]
  23. Cancer Sci. 2008 Oct;99(10):2012-8 [PMID: 19016761]
  24. Hum Reprod. 2010 Oct;25(10):2480-8 [PMID: 20713416]
  25. Prog Retin Eye Res. 2021 May;82:100906 [PMID: 33022379]
  26. Ophthalmology. 2020 May;127(5):616-636 [PMID: 31864668]
  27. Immunity. 2019 Mar 19;50(3):723-737.e7 [PMID: 30850344]
  28. Br J Ophthalmol. 2012 Jan;96(1):14-20 [PMID: 21791509]
  29. J Exp Med. 2006 Oct 30;203(11):2495-507 [PMID: 17030947]
  30. Hum Mol Genet. 2022 Jul 21;31(14):2406-2423 [PMID: 35181781]
  31. Cells. 2022 Sep 24;11(19): [PMID: 36230937]
  32. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24100-24107 [PMID: 31712411]
  33. Nat Rev Genet. 2019 Jun;20(6):317 [PMID: 30980030]
  34. BMJ Open Ophthalmol. 2019 Dec 15;4(1):e000398 [PMID: 31909196]
  35. Nat Methods. 2022 Sep;19(9):1076-1087 [PMID: 36050488]
  36. Arthritis Res Ther. 2007;9(5):108 [PMID: 18001496]
  37. Cell Metab. 2020 Apr 7;31(4):862-877.e14 [PMID: 32268117]
  38. Invest Ophthalmol Vis Sci. 2011 Mar 01;52(3):1599-605 [PMID: 21051733]
  39. Ann Med. 2006;38(7):450-71 [PMID: 17101537]
  40. Microvasc Res. 2020 Sep;131:104031 [PMID: 32531351]
  41. Am J Pathol. 2020 Aug;190(8):1632-1642 [PMID: 32339498]
  42. Hum Mol Genet. 2023 May 5;32(10):1698-1710 [PMID: 36645183]
  43. Sci Rep. 2017 Aug 29;7(1):9672 [PMID: 28852052]
  44. Sci Rep. 2021 Jun 23;11(1):13152 [PMID: 34162934]
  45. Sci Rep. 2021 Sep 10;11(1):18084 [PMID: 34508129]
  46. Blood. 2011 Aug 18;118(7):2015-26 [PMID: 21636859]
  47. Ophthalmol Retina. 2019 Mar;3(3):211-219 [PMID: 31014697]
  48. Ophthalmology. 2016 Oct;123(10S):S78-S88 [PMID: 27664289]
  49. Cell Death Dis. 2022 Jun 8;13(6):536 [PMID: 35676251]

Grants

  1. F30 EY034009/NEI NIH HHS
  2. T32 GM145441/NIGMS NIH HHS
  3. T32 GM139776/NIGMS NIH HHS
  4. P30 EY025580/NEI NIH HHS
  5. F30 EY031923/NEI NIH HHS
  6. R01 EY033331/NEI NIH HHS
  7. R01 EY033308/NEI NIH HHS

MeSH Term

Humans
Animals
Mice
Transcriptome
Endothelial Cells
Choroidal Neovascularization
Retina
Macular Degeneration

Word Cloud

Created with Highcharts 10.0.0macularneovascularizationexpressiongenechoroidretinadysregulateddonorgenesage-relateddegenerationcellbecomestudyperformedspatialhumanwellwithinareaWithinendothelialcellssignalingretinalpigmentepitheliumPurpose:MacularrelativelycommonpotentiallyvisuallydevastatingcomplicationpathologicangiogenesiscanoriginateeitherlimitedunderstandingdifferenttypesdynamicprocessMethods:alteredfocalareaspathologyRNAsequencingeyehealthycontroldifferentialidentifyenricheduseddeconvolutionalgorithmspredictoriginatingtypeResults:demonstratedincreasedrelatedRhofamilyGTPaseintegrinLikewiseVEGFTGFB1identifiedpotentialupstreamregulatorsdriveobservedchangesproducedprofilescomparedprevioussingle-cellexperimentsmodellaser-inducedmicesecondaryaiminvestigatedregionalpatternsneuralperipheralConclusions:OverallspatiallyanalyzesacrosshealthdescribessetcandidatemoleculesGeneExpressionHumanChoroidalNeovascularMembraneUsingSpatialTranscriptomics

Similar Articles

Cited By