A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications.

Tomasz Chudziak, Verónica Montes-García, Włodzimierz Czepa, Dawid Pakulski, Andrzej Musiał, Cataldo Valentini, Michał Bielejewski, Michela Carlin, Aurelia Tubaro, Marco Pelin, Paolo Samorì, Artur Ciesielski
Author Information
  1. Tomasz Chudziak: Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, Poland.
  2. Verónica Montes-García: University of Strasbourg CNRS ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000 Strasbourg, France. samori@unistra.fr. ORCID
  3. Włodzimierz Czepa: Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, Poland.
  4. Dawid Pakulski: Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, Poland. ciesielski@unistra.fr.
  5. Andrzej Musiał: Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, Poland. ciesielski@unistra.fr.
  6. Cataldo Valentini: Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, Poland. ciesielski@unistra.fr. ORCID
  7. Michał Bielejewski: Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland. ORCID
  8. Michela Carlin: Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy. ORCID
  9. Aurelia Tubaro: Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy. ORCID
  10. Marco Pelin: Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy. ORCID
  11. Paolo Samorì: University of Strasbourg CNRS ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000 Strasbourg, France. samori@unistra.fr. ORCID
  12. Artur Ciesielski: Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, Poland. ciesielski@unistra.fr. ORCID

Abstract

The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m) can be obtained by using AA (12 hours of reaction), NaSO and NH (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with properties for advanced applications in electronics and energy storage.

References

  1. ACS Nano. 2018 Nov 27;12(11):10582-10620 [PMID: 30387986]
  2. Science. 2016 Sep 23;353(6306):1413-1416 [PMID: 27708034]
  3. PLoS One. 2015 Dec 14;10(12):e0144842 [PMID: 26658644]
  4. NanoImpact. 2023 Jan;29:100448 [PMID: 36565921]
  5. Sci Rep. 2017 Jan 11;7:40163 [PMID: 28074865]
  6. Nanoscale. 2011 Jul;3(7):2849-53 [PMID: 21674112]
  7. Chemosphere. 2021 Oct;281:130739 [PMID: 34004516]
  8. Nanoscale. 2018 Jul 5;10(25):11820-11830 [PMID: 29920573]
  9. Adv Mater. 2010 Apr 18;22(15):1731-5 [PMID: 20496405]
  10. Nano Lett. 2008 Jan;8(1):323-7 [PMID: 18069877]
  11. Sci Rep. 2020 Oct 27;10(1):18407 [PMID: 33110217]
  12. Nat Commun. 2012 Jan 24;3:638 [PMID: 22273676]
  13. Nano Lett. 2011 Aug 10;11(8):3190-6 [PMID: 21696186]
  14. Nanoscale. 2023 Mar 23;15(12):5743-5755 [PMID: 36880730]
  15. Toxicol Lett. 1998 Dec 28;102-103:277-82 [PMID: 10022266]
  16. J Am Chem Soc. 2013 Apr 17;135(15):5921-9 [PMID: 23565654]
  17. Nanoscale. 2020 Jan 2;12(2):610-622 [PMID: 31829371]
  18. Nanoscale. 2017 Jul 13;9(27):9562-9571 [PMID: 28664948]
  19. Science. 2015 Jan 2;347(6217):1246501 [PMID: 25554791]
  20. Nat Commun. 2013;4:2487 [PMID: 24042088]
  21. Toxicol Res. 2016 Oct;32(4):311-316 [PMID: 27818733]
  22. Materials (Basel). 2021 Sep 30;14(19): [PMID: 34640126]
  23. Nanoscale. 2018 Jun 21;10(24):11604-11615 [PMID: 29892760]
  24. Phys Rev Lett. 2006 Nov 3;97(18):187401 [PMID: 17155573]
  25. Chem Commun (Camb). 2013 Aug 28;49(67):7391-3 [PMID: 23860424]
  26. Acta Biomater. 2013 Dec;9(12):9243-57 [PMID: 23958782]
  27. Nanotechnology. 2011 Jan 28;22(4):045704 [PMID: 21169657]
  28. Molecules. 2022 Nov 14;27(22): [PMID: 36431940]
  29. Angew Chem Int Ed Engl. 2014 Jul 21;53(30):7720-38 [PMID: 24962439]
  30. Chem Soc Rev. 2018 Jul 2;47(13):4860-4908 [PMID: 29938255]
  31. Nano Lett. 2012 Aug 8;12(8):3925-30 [PMID: 22764888]
  32. Science. 2011 Jun 24;332(6037):1537-41 [PMID: 21566159]
  33. Adv Mater. 2018 Apr;30(17):e1705489 [PMID: 29479744]
  34. Chem Commun (Camb). 2010 Feb 21;46(7):1112-4 [PMID: 20126730]
  35. Adv Mater. 2013 Oct 25;25(40):5779-84 [PMID: 23900931]
  36. Adv Mater. 2019 Jan;31(1):e1804600 [PMID: 30387217]
  37. Chem Soc Rev. 2017 Jul 31;46(15):4400-4416 [PMID: 28722038]

Word Cloud

Created with Highcharts 10.0.0reductionapplicationschemicalreactionGO12hoursCrGOelectronicselectrochemicalelectricalusinggrapheneoxidemakesprotocolscompatibilitycomparativeinvestigationdifferentsodiumAAperformancecanobtainedcapacitanceCrGOspresenceoxygen-containingfunctionalgroupsbasalplaneedgesendowsinsulatingnatureratherunsuitableelectronicFortunatelyprocesspossiblerestorespconjugationAmongvariousappealinglarge-scaleproductionNeverthelessdespitevastnumberreportedassessmentyetsubjectin-depthrenderingestablishmentstructure-performancerelationshipimpossiblereportsystematicstudyexploringreducingagentshydrazinehydrateborohydrideascorbicaciddithionitetimes2orderboostchemicallyreducedworkprovideevidenceoptimalconditionsvarydependingchosenapplicationwhetherpurposesexhibitinggoodconductivity>1800SmNaSONHindependenttimeConverselydisplayingsuperiorspecific211Fgretention>995%2000cyclesNaBHFinallywearableflexiblealsodemonstratedskinirritationtestsstrategydescribedrepresentssignificantadvancementtowardsdevelopmentenvironmentallyfriendlypropertiesadvancedenergystorageengineering

Similar Articles

Cited By