Automatic measurements of left ventricular volumes and ejection fraction by artificial intelligence: clinical validation in real time and large databases.

Sindre Olaisen, Erik Smistad, Torvald Espeland, Jieyu Hu, David Pasdeloup, Andreas Østvik, Svend Aakhus, Assami Rösner, Siri Malm, Michael Stylidis, Espen Holte, Bjørnar Grenne, Lasse Løvstakken, Havard Dalen
Author Information
  1. Sindre Olaisen: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway. ORCID
  2. Erik Smistad: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway. ORCID
  3. Torvald Espeland: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway. ORCID
  4. Jieyu Hu: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway.
  5. David Pasdeloup: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway. ORCID
  6. Andreas Østvik: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway.
  7. Svend Aakhus: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway.
  8. Assami Rösner: Department of Cardiology, University Hospital of North Norway, Tromsø, Norway.
  9. Siri Malm: Institute for Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway.
  10. Michael Stylidis: Department of Cardiology, University Hospital of North Norway, Tromsø, Norway.
  11. Espen Holte: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway. ORCID
  12. Bjørnar Grenne: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway.
  13. Lasse Løvstakken: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway.
  14. Havard Dalen: Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 3, 7030 Trondheim, Norway. ORCID

Abstract

AIMS: Echocardiography is a cornerstone in cardiac imaging, and left ventricular (LV) ejection fraction (EF) is a key parameter for patient management. Recent advances in artificial intelligence (AI) have enabled fully automatic measurements of LV volumes and EF both during scanning and in stored recordings. The aim of this study was to evaluate the impact of implementing AI measurements on acquisition and processing time and test-retest reproducibility compared with standard clinical workflow, as well as to study the agreement with reference in large internal and external databases.
METHODS AND RESULTS: Fully automatic measurements of LV volumes and EF by a novel AI software were compared with manual measurements in the following clinical scenarios: (i) in real time use during scanning of 50 consecutive patients, (ii) in 40 subjects with repeated echocardiographic examinations and manual measurements by 4 readers, and (iii) in large internal and external research databases of 1881 and 849 subjects, respectively. Real-time AI measurements significantly reduced the total acquisition and processing time by 77% (median 5.3 min, P < 0.001) compared with standard clinical workflow. Test-retest reproducibility of AI measurements was superior in inter-observer scenarios and non-inferior in intra-observer scenarios. AI measurements showed good agreement with reference measurements both in real time and in large research databases.
CONCLUSION: The software reduced the time taken to perform and volumetrically analyse routine echocardiograms without a decrease in accuracy compared with experts.

Keywords

References

  1. Lancet Digit Health. 2022 Jan;4(1):e46-e54 [PMID: 34863649]
  2. Clin Med Insights Cardiol. 2015 Feb 25;9(Suppl 1):11-31 [PMID: 25780344]
  3. Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1027-1037 [PMID: 30941679]
  4. Circ Cardiovasc Imaging. 2021 Jun;14(6):e012293 [PMID: 34126754]
  5. Nature. 2020 Apr;580(7802):252-256 [PMID: 32269341]
  6. Comput Biol Med. 2023 Apr;156:106705 [PMID: 36863190]
  7. Echocardiography. 2018 Nov;35(11):1795-1805 [PMID: 30073701]
  8. Ultrasound Med Biol. 2019 Feb;45(2):374-384 [PMID: 30470606]
  9. J Am Coll Cardiol. 2012 May 15;59(20):1799-808 [PMID: 22575319]
  10. Int J Cardiovasc Imaging. 2015 Oct;31(7):1303-14 [PMID: 26141526]
  11. Clin Nucl Med. 2010 Dec;35(12):927-30 [PMID: 21206222]
  12. JACC Cardiovasc Imaging. 2023 Dec;16(12):1501-1515 [PMID: 36881415]
  13. Echocardiography. 2021 Jun;38(6):901-908 [PMID: 33960012]
  14. J Am Coll Cardiol. 2015 Sep 29;66(13):1456-66 [PMID: 26403342]
  15. BMJ Open. 2022 Oct 13;12(10):e063793 [PMID: 36229153]
  16. Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70 [PMID: 25712077]
  17. JAMA. 1998 Feb 25;279(8):585-92 [PMID: 9486752]
  18. Eur J Echocardiogr. 2010 Mar;11(2):149-56 [PMID: 19959533]
  19. NPJ Digit Med. 2020 Jan 24;3:10 [PMID: 31993508]
  20. Nature. 2023 Apr;616(7957):520-524 [PMID: 37020027]
  21. Echocardiography. 2014;31(1):87-100 [PMID: 24786629]
  22. Circulation. 2018 Oct 16;138(16):1623-1635 [PMID: 30354459]
  23. Eur Heart J Digit Health. 2022 Jan 20;3(1):29-37 [PMID: 36713988]
  24. Radiol Cardiothorac Imaging. 2021 Sep 30;3(5):e210156 [PMID: 34778785]
  25. Eur Heart J. 2021 Sep 21;42(36):3599-3726 [PMID: 34447992]
  26. IEEE Trans Med Imaging. 2019 Sep;38(9):2198-2210 [PMID: 30802851]
  27. Eur Heart J. 2022 Feb 12;43(7):561-632 [PMID: 34453165]
  28. J Am Soc Echocardiogr. 2014 Mar;27(3):292-301 [PMID: 24440110]
  29. Eur Heart J. 2022 Nov 1;43(41):4229-4361 [PMID: 36017568]
  30. IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2595-2604 [PMID: 32175861]
  31. J Am Coll Cardiol. 2018 Nov 6;72(19):2360-2379 [PMID: 30384893]
  32. Eur Heart J. 2022 Oct 21;43(40):3997-4126 [PMID: 36017572]
  33. Circulation. 1994 Dec;90(6):2645-57 [PMID: 7994804]

Grants

  1. /Norwegian University of Science and Technology
  2. /Research Council of Norway
  3. /Central Norway Health Authority
  4. /St. Olavs University Hospital
  5. /Nord-Trøndelag Hospital Trust
  6. /Simon Fougner Hartmann Family Foundation

MeSH Term

Humans
Stroke Volume
Artificial Intelligence
Reproducibility of Results
Ventricular Function, Left
Echocardiography
Ventricular Dysfunction, Left

Word Cloud

Created with Highcharts 10.0.0measurementsAItimecomparedclinicallargedatabasesLVEFvolumesreproducibilityrealleftventricularejectionfractionartificialautomaticscanningstudyacquisitionprocessingstandardworkflowagreementreferenceinternalexternalsoftwaremanualsubjectsresearchreducedscenarioslearningAIMS:EchocardiographycornerstonecardiacimagingkeyparameterpatientmanagementRecentadvancesintelligenceenabledfullystoredrecordingsaimevaluateimpactimplementingtest-retestwellMETHODSANDRESULTS:Fullynovelfollowingscenarios:use50consecutivepatientsii40repeatedechocardiographicexaminations4readersiii1881849respectivelyReal-timesignificantlytotal77%median53 minP<0001Test-retestsuperiorinter-observernon-inferiorintra-observershowedgoodCONCLUSION:takenperformvolumetricallyanalyseroutineechocardiogramswithoutdecreaseaccuracyexpertsAutomaticintelligence:validationdeepechocardiographymachineobservervariabilitysystolicfunction

Similar Articles

Cited By