Validation and evaluation of subject-specific finite element models of the pediatric knee.

Ayda Karimi Dastgerdi, Amir Esrafilian, Christopher P Carty, Azadeh Nasseri, Alireza Yahyaiee Bavil, Martina Barzan, Rami K Korhonen, Ivan Astori, Wayne Hall, David John Saxby
Author Information
  1. Ayda Karimi Dastgerdi: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia. ayda.karimidastgerdi@griffithuni.edu.au.
  2. Amir Esrafilian: Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
  3. Christopher P Carty: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia.
  4. Azadeh Nasseri: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia.
  5. Alireza Yahyaiee Bavil: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia.
  6. Martina Barzan: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia.
  7. Rami K Korhonen: Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
  8. Ivan Astori: Department of Orthopedics, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia.
  9. Wayne Hall: School of Engineering and Built Environment, Mechanical Engineering and Industrial Design, Griffith University, Gold Coast, QLD, Australia.
  10. David John Saxby: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia.

Abstract

Finite element (FE) models have been widely used to investigate knee joint biomechanics. Most of these models have been developed to study adult knees, neglecting pediatric populations. In this study, an atlas-based approach was employed to develop subject-specific FE models of the knee for eight typically developing pediatric individuals. Initially, validation simulations were performed at four passive tibiofemoral joint (TFJ) flexion angles, and the resulting TFJ and patellofemoral joint (PFJ) kinematics were compared to corresponding patient-matched measurements derived from magnetic resonance imaging (MRI). A neuromusculoskeletal-(NMSK)-FE pipeline was then used to simulate knee biomechanics during stance phase of walking gait for each participant to evaluate model simulation of a common motor task. Validation simulations demonstrated minimal error and strong correlations between FE-predicted and MRI-measured TFJ and PFJ kinematics (ensemble average of root mean square errors < 5 mm for translations and < 4.1° for rotations). The FE-predicted kinematics were strongly correlated with published reports (ensemble average of Pearson's correlation coefficients (ρ) > 0.9 for translations and ρ > 0.8 for rotations), except for TFJ mediolateral translation and abduction/adduction rotation. For walking gait, NMSK-FE model-predicted knee kinematics, contact areas, and contact pressures were consistent with experimental reports from literature. The strong agreement between model predictions and experimental reports underscores the capability of sequentially linked NMSK-FE models to accurately predict pediatric knee kinematics, as well as complex contact pressure distributions across the TFJ articulations. These models hold promise as effective tools for parametric analyses, population-based clinical studies, and enhancing our understanding of various pediatric knee injury mechanisms. They also support intervention design and prediction of surgical outcomes in pediatric populations.

References

  1. Sci Rep. 2016 Feb 24;6:21415 [PMID: 26906749]
  2. J Biomech. 2014 Jun 27;47(9):2006-12 [PMID: 24296275]
  3. Gait Posture. 2007 Mar;25(3):440-52 [PMID: 17011192]
  4. J Biomech. 2010 Jul 20;43(10):2039-42 [PMID: 20413123]
  5. J Orthop Res. 2017 Oct;35(10):2233-2242 [PMID: 28059475]
  6. J Biomech. 1996 Jul;29(7):955-61 [PMID: 8809626]
  7. IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50 [PMID: 18018689]
  8. J Biomech. 2015 Nov 5;48(14):3929-36 [PMID: 26522621]
  9. J Biomech. 2012 Feb 2;45(3):474-83 [PMID: 22209313]
  10. J Biomech Eng. 2014 Jan;136(1):011002 [PMID: 24763546]
  11. J Biomech Eng. 2009 Dec;131(12):121007 [PMID: 20524730]
  12. J Biomech. 2022 May;136:111069 [PMID: 35381503]
  13. J Biomech. 2017 Dec 8;65:1-11 [PMID: 28917580]
  14. J Biomech. 2017 May 24;57:152-156 [PMID: 28454908]
  15. Gait Posture. 2006 Oct;24(2):152-64 [PMID: 16260140]
  16. J Biomech Eng. 2019 Jul 1;141(7): [PMID: 31166589]
  17. J Electromyogr Kinesiol. 2000 Oct;10(5):361-74 [PMID: 11018445]
  18. PLoS Comput Biol. 2020 Jun 25;16(6):e1007998 [PMID: 32584809]
  19. Med Sci Sports Exerc. 2017 Nov;49(11):2260-2267 [PMID: 28614195]
  20. J Biomech. 2014 Feb 07;47(3):631-8 [PMID: 24368144]
  21. Sci Rep. 2018 Feb 2;8(1):2323 [PMID: 29396466]
  22. J Biomech. 2019 May 9;88:164-172 [PMID: 31003752]
  23. IEEE Trans Biomed Eng. 2016 Oct;63(10):2068-79 [PMID: 27392337]
  24. Clin Biomech (Bristol, Avon). 2005 Jul;20(6):636-44 [PMID: 15927737]
  25. Sci Rep. 2017 Dec 12;7(1):17396 [PMID: 29234021]
  26. J Biomech. 2019 Jan 3;82:124-133 [PMID: 30420173]
  27. Sci Rep. 2018 Nov 26;8(1):17351 [PMID: 30478347]
  28. J Biomech. 2014 Nov 28;47(15):3613-21 [PMID: 25458151]
  29. J Biomech. 2016 Jan 25;49(2):141-8 [PMID: 26776930]
  30. J Biomech Eng. 1991 Aug;113(3):263-9 [PMID: 1921352]
  31. IEEE Trans Biomed Eng. 2022 Sep;69(9):2860-2871 [PMID: 35239473]
  32. J Biomech. 2016 Dec 8;49(16):3891-3900 [PMID: 27825602]
  33. J Biomech. 2012 Feb 23;45(4):625-33 [PMID: 22236526]
  34. Med Eng Phys. 1998 Jun;20(4):276-90 [PMID: 9728679]
  35. Clin Biomech (Bristol, Avon). 2007 Mar;22(3):336-43 [PMID: 17140709]
  36. J Biomech. 2016 Jan 25;49(2):302-9 [PMID: 26742720]
  37. Comput Math Methods Med. 2013;2013:718423 [PMID: 23509602]
  38. Ann Biomed Eng. 2015 Nov;43(11):2675-85 [PMID: 25917122]
  39. J Appl Biomech. 2017 Oct 1;33(5):354-360 [PMID: 28290736]
  40. J Biomech. 2009 Aug 25;42(12):1877-84 [PMID: 19497573]
  41. J Biomech. 2007;40(12):2655-62 [PMID: 17359982]
  42. Ann Biomed Eng. 2020 Dec;48(12):2821-2835 [PMID: 33200262]
  43. J Biomech. 2015 Mar 18;48(5):767-78 [PMID: 25560273]
  44. Front Bioeng Biotechnol. 2020 Feb 28;8:93 [PMID: 32185167]
  45. J Biomech. 2004 Mar;37(3):383-90 [PMID: 14757458]
  46. J Biomech Eng. 2016 Jul 1;138(7): [PMID: 27138135]
  47. J Biomech. 2015 Jun 1;48(8):1397-406 [PMID: 25795269]
  48. Proc Inst Mech Eng H. 2010;224(9):1121-32 [PMID: 21053776]
  49. Med Eng Phys. 2019 Dec;74:1-12 [PMID: 31492543]
  50. J Biomech Eng. 2002 Jun;124(3):273-80 [PMID: 12071261]
  51. J Biomech. 2019 Aug 27;93:194-203 [PMID: 31331662]
  52. IEEE Trans Neural Syst Rehabil Eng. 2021;29:123-133 [PMID: 33175682]
  53. Phys Sportsmed. 2016 Sep;44(3):257-62 [PMID: 27121730]

MeSH Term

Adult
Humans
Child
Finite Element Analysis
Knee Joint
Knee
Patellofemoral Joint
Magnetic Resonance Imaging
Biomechanical Phenomena
Range of Motion, Articular

Word Cloud

Created with Highcharts 10.0.0kneemodelspediatricTFJkinematicsjointreportscontactelementFEusedbiomechanicsstudypopulationssubject-specificsimulationsPFJwalkinggaitmodelValidationstrongFE-predictedensembleaveragetranslationsrotationsNMSK-FEexperimentalFinitewidelyinvestigatedevelopedadultkneesneglectingatlas-basedapproachemployeddevelopeighttypicallydevelopingindividualsInitiallyvalidationperformedfourpassivetibiofemoralflexionanglesresultingpatellofemoralcomparedcorrespondingpatient-matchedmeasurementsderivedmagneticresonanceimagingMRIneuromusculoskeletal-NMSK-FEpipelinesimulatestancephaseparticipantevaluatesimulationcommonmotortaskdemonstratedminimalerrorcorrelationsMRI-measuredrootmeansquareerrors < 5mmand < 4stronglycorrelatedpublishedPearson'scorrelationcoefficientsρ > 09ρ > 08exceptmediolateraltranslationabduction/adductionrotationmodel-predictedareaspressuresconsistentliteratureagreementpredictionsunderscorescapabilitysequentiallylinkedaccuratelypredictwellcomplexpressuredistributionsacrossarticulationsholdpromiseeffectivetoolsparametricanalysespopulation-basedclinicalstudiesenhancingunderstandingvariousinjurymechanismsalsosupportinterventiondesignpredictionsurgicaloutcomesevaluationfinite

Similar Articles

Cited By