Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum.

Margaret I Steele, Jessica M Peiser, P M Shreenidhi, Joan E Strassmann, David C Queller
Author Information
  1. Margaret I Steele: Biology Department, Washington University in St. Louis, St. Louis, MO, USA. msteele@wustl.edu. ORCID
  2. Jessica M Peiser: Biology Department, Washington University in St. Louis, St. Louis, MO, USA.
  3. P M Shreenidhi: Biology Department, Washington University in St. Louis, St. Louis, MO, USA.
  4. Joan E Strassmann: Biology Department, Washington University in St. Louis, St. Louis, MO, USA.
  5. David C Queller: Biology Department, Washington University in St. Louis, St. Louis, MO, USA. ORCID

Abstract

The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.

References

  1. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  2. Cell Microbiol. 2014 Jun;16(6):816-23 [PMID: 24628900]
  3. BMC Evol Biol. 2014 May 15;14:105 [PMID: 24884856]
  4. Nat Rev Microbiol. 2021 Oct;19(10):654-665 [PMID: 34089008]
  5. Curr Protoc Bioinformatics. 2014 Sep 08;47:8.13.1-24 [PMID: 25199793]
  6. Syst Appl Microbiol. 2011 May;34(3):180-8 [PMID: 21392918]
  7. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  8. Cell Microbiol. 2010 Mar;12(3):283-91 [PMID: 19919566]
  9. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  10. Nat Commun. 2016 Mar 01;7:10938 [PMID: 26927887]
  11. PLoS Pathog. 2015 Jun 16;11(6):e1004969 [PMID: 26080006]
  12. Genes (Basel). 2020 Jun 20;11(6): [PMID: 32575747]
  13. Front Microbiol. 2017 Nov 23;8:2284 [PMID: 29218036]
  14. Front Cell Infect Microbiol. 2018 Nov 23;8:411 [PMID: 30533398]
  15. Annu Rev Entomol. 1998;43:17-37 [PMID: 15012383]
  16. Environ Microbiol. 2015 Jul;17(7):2196-202 [PMID: 25640659]
  17. Nucleic Acids Res. 2016 Aug 19;44(14):6614-24 [PMID: 27342282]
  18. Trends Plant Sci. 2002 Oct;7(10):440-4 [PMID: 12399178]
  19. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  20. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14528-33 [PMID: 23898207]
  21. Front Microbiol. 2018 Feb 23;9:277 [PMID: 29527195]
  22. Annu Rev Microbiol. 2000;54:567-613 [PMID: 11018138]
  23. Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10800-7 [PMID: 21690339]
  24. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5029-37 [PMID: 26305954]
  25. Evol Lett. 2022 May 02;6(3):245-254 [PMID: 35784451]
  26. PLoS Biol. 2017 Apr 12;15(4):e2000420 [PMID: 28403138]
  27. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  28. Front Cell Infect Microbiol. 2018 Jan 09;7:529 [PMID: 29376033]
  29. Science. 2007 Aug 3;317(5838):678-81 [PMID: 17673666]
  30. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46 [PMID: 21672958]
  31. Appl Environ Microbiol. 2006 Nov;72(11):7083-90 [PMID: 17088380]
  32. PeerJ. 2020 May 22;8:e9151 [PMID: 32509456]
  33. Front Immunol. 2018 Jan 04;8:1906 [PMID: 29354124]
  34. PLoS Pathog. 2019 Jun 20;15(6):e1007812 [PMID: 31220187]
  35. ISME J. 2019 Aug;13(8):2068-2081 [PMID: 31019270]
  36. PLoS Genet. 2012 Sep;8(9):e1002983 [PMID: 23028376]
  37. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3159-64 [PMID: 11867744]
  38. Appl Environ Microbiol. 2005 Jan;71(1):20-8 [PMID: 15640165]
  39. Nature. 2011 Jan 20;469(7330):393-6 [PMID: 21248849]
  40. Proc Biol Sci. 2016 Apr 27;283(1829): [PMID: 27097923]
  41. Environ Microbiol. 2017 Oct;19(10):4045-4064 [PMID: 28654176]
  42. ISME J. 2020 Apr;14(4):919-930 [PMID: 31896783]
  43. Mol Biol Evol. 2017 Dec 1;34(12):3267-3278 [PMID: 29029342]
  44. Nat Commun. 2020 Apr 8;11(1):1741 [PMID: 32269224]
  45. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35 [PMID: 33978755]
  46. Mol Ecol. 2019 Feb;28(4):847-862 [PMID: 30575161]

MeSH Term

Animals
Predatory Behavior
Dictyostelium
Pseudomonas
Amoeba
Bacteria

Word Cloud

Created with Highcharts 10.0.0discoideumbacteriaPseudomonasstrainspredationresistanceamoebaDictyosteliumdiverseDfruitingbodiespredation-resistantinfectionsspeciessecondaryedibleisolatesmaysoilactspredatorpotentialhosttestedfifteenisolatedtransientlyinfectedwildabilityescapeinfectThreefrequentlycausedextracellularfoundwithinsporesFurthermoreinfectiononeinducessuppressesotherwiseAnotherstraincanpersistinsideamoebaephagocytosedrarelytakensequencedisolategenomesdiscoveredmonophyleticManyencodesecretionsystemstoxinsknownimprovephagocytosiswellmetabolitebiosyntheticgeneclusterscontributeHoweverdistributiongenesaloneexplainotherslineageemployuniquemechanismPredation-resistantengagesymbiont-likebehaviorsocial

Similar Articles

Cited By (3)