Extract latent features of single-particle trajectories with historical experience learning.

Yongyu Zhang, Feng Ge, Xijian Lin, Jianfeng Xue, Yuxin Song, Hao Xie, Yan He
Author Information
  1. Yongyu Zhang: Department of Chemistry, Tsinghua University, Beijing, P.R. China.
  2. Feng Ge: Department of Chemistry, Tsinghua University, Beijing, P.R. China.
  3. Xijian Lin: Department of Chemistry, Tsinghua University, Beijing, P.R. China.
  4. Jianfeng Xue: Department of Chemistry, Tsinghua University, Beijing, P.R. China.
  5. Yuxin Song: Department of Chemistry, Tsinghua University, Beijing, P.R. China.
  6. Hao Xie: Department of Automation, Tsinghua University, Beijing, P.R. China. Electronic address: xiehao@tsinghua.edu.cn.
  7. Yan He: Department of Chemistry, Tsinghua University, Beijing, P.R. China. Electronic address: yanhe2021@mail.tsinghua.edu.cn.

Abstract

Single-particle tracking has enabled real-time, in situ quantitative studies of complex systems. However, inferring dynamic state changes from noisy and undersampling trajectories encounters challenges. Here, we introduce a data-driven method for extracting features of subtrajectories with historical experience learning (Deep-SEES), where a single-particle tracking analysis pipeline based on a self-supervised architecture automatically searches for the latent space, allowing effective segmentation of the underlying states from noisy trajectories without prior knowledge on the particle dynamics. We validated our method on a variety of noisy simulated and experimental data. Our results showed that the method can faithfully capture both stable states and their dynamic switch. In highly random systems, our method outperformed commonly used unsupervised methods in inferring motion states, which is important for understanding nanoparticles interacting with living cell membranes, active enzymes, and liquid-liquid phase separation. Self-generating latent features of trajectories could potentially improve the understanding, estimation, and prediction of many complex systems.

References

  1. Methods. 2017 Feb 15;115:80-90 [PMID: 27713081]
  2. Elife. 2022 Sep 06;11: [PMID: 36066004]
  3. Phys Rev Lett. 2008 Oct 24;101(17):174504 [PMID: 18999753]
  4. Phys Rev E. 2020 Sep;102(3-1):032108 [PMID: 33075869]
  5. Sci Adv. 2021 Jun 16;7(25): [PMID: 34134987]
  6. Phys Rev E. 2020 Sep;102(3-1):032402 [PMID: 33076015]
  7. Nat Commun. 2015 Jun 25;6:7516 [PMID: 26108639]
  8. Proc Natl Acad Sci U S A. 2021 Aug 3;118(31): [PMID: 34321355]
  9. Anal Chem. 2022 May 24;94(20):7158-7163 [PMID: 35533299]
  10. J Phys Chem B. 2019 Jan 24;123(3):689-701 [PMID: 30632755]
  11. Chem Soc Rev. 2017 Jul 17;46(14):4218-4244 [PMID: 28585944]
  12. Biophys J. 2018 Mar 13;114(5):1018-1025 [PMID: 29539390]
  13. Biophys J. 2019 Jul 23;117(2):185-192 [PMID: 31280841]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052707 [PMID: 26651723]
  15. Biophys J. 1997 Apr;72(4):1744-53 [PMID: 9083678]
  16. Phys Chem Chem Phys. 2013 Jan 21;15(3):845-9 [PMID: 23202416]
  17. Biophys J. 2014 Mar 18;106(6):1327-37 [PMID: 24655508]
  18. Nat Commun. 2019 Jan 23;10(1):390 [PMID: 30674886]
  19. J Am Chem Soc. 2012 Aug 15;134(32):13404-9 [PMID: 22861162]
  20. J Phys Chem B. 2022 Oct 6;126(39):7541-7551 [PMID: 36129778]
  21. Nat Methods. 2014 Mar;11(3):281-9 [PMID: 24441936]
  22. Nat Commun. 2021 Oct 29;12(1):6253 [PMID: 34716305]
  23. PLoS Comput Biol. 2023 Feb 2;19(2):e1010088 [PMID: 36730436]
  24. Phys Rev E. 2019 Sep;100(3-1):032410 [PMID: 31640019]
  25. Phys Chem Chem Phys. 2018 Sep 26;20(37):24099-24108 [PMID: 30204178]
  26. Nat Commun. 2018 Sep 21;9(1):3864 [PMID: 30242284]
  27. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  28. Phys Rev E. 2016 May;93(5):053303 [PMID: 27301001]
  29. Sci Rep. 2019 Nov 20;9(1):17160 [PMID: 31748591]
  30. Nat Methods. 2018 Oct;15(10):805-815 [PMID: 30224673]
  31. Proc Am Control Conf. 2020 Jul;2020:5151-5156 [PMID: 34483467]
  32. PLoS Comput Biol. 2009 Nov;5(11):e1000556 [PMID: 19893741]
  33. Chem Rev. 2017 Jun 14;117(11):7331-7376 [PMID: 28520419]
  34. J Phys Chem B. 2021 Dec 16;125(49):13425-13435 [PMID: 34870418]
  35. Neural Comput. 2000 Oct;12(10):2451-71 [PMID: 11032042]
  36. Nat Methods. 2015 Sep;12(9):838-40 [PMID: 26192083]
  37. Phys Rev E. 2019 Jul;100(1-1):010102 [PMID: 31499844]
  38. Nat Chem. 2020 Aug;12(8):705-716 [PMID: 32514159]
  39. Biophys J. 2014 Aug 5;107(3):588-598 [PMID: 25099798]
  40. Nat Methods. 2013 Mar;10(3):265-9 [PMID: 23396281]
  41. ACS Nano. 2021 Jan 26;15(1):539-549 [PMID: 33348982]
  42. J Phys Chem A. 2017 Jul 13;121(27):5100-5109 [PMID: 28616980]
  43. Biophys J. 2015 Feb 3;108(3):540-56 [PMID: 25650922]
  44. Anal Chem. 2021 Jul 13;93(27):9559-9567 [PMID: 34210134]

MeSH Term

Motion
Single Molecule Imaging
Cell Membrane
Nanoparticles

Word Cloud

Created with Highcharts 10.0.0trajectoriesmethodsystemsnoisyfeatureslatentstatestrackingcomplexinferringdynamichistoricalexperiencelearningsingle-particleunderstandingSingle-particleenabledreal-timesituquantitativestudiesHoweverstatechangesundersamplingencounterschallengesintroducedata-drivenextractingsubtrajectoriesDeep-SEESanalysispipelinebasedself-supervisedarchitectureautomaticallysearchesspaceallowingeffectivesegmentationunderlyingwithoutpriorknowledgeparticledynamicsvalidatedvarietysimulatedexperimentaldataresultsshowedcanfaithfullycapturestableswitchhighlyrandomoutperformedcommonlyusedunsupervisedmethodsmotionimportantnanoparticlesinteractinglivingcellmembranesactiveenzymesliquid-liquidphaseseparationSelf-generatingpotentiallyimproveestimationpredictionmanyExtract

Similar Articles

Cited By