Exploring the Spatial Relationships Between Real and Virtual Experiences: What Transfers and What Doesn't.

Gregory D Clemenson, Lulian Wang, Zeqian Mao, Shauna M Stark, Craig E L Stark
Author Information
  1. Gregory D Clemenson: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.
  2. Lulian Wang: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.
  3. Zeqian Mao: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.
  4. Shauna M Stark: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.
  5. Craig E L Stark: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.

Abstract

Virtual environments are commonly used to assess spatial cognition in humans. For the past few decades, researchers have used virtual environments to investigate how people navigate, learn, and remember their surrounding environment. In combination with tools such as electroencephalogram, neuroimaging, and electrophysiology, these virtual environments have proven invaluable in their ability to help elucidate the underlying neural mechanisms of spatial learning and memory in humans. However, a critical assumption that is made whenever using virtual experiences is that the spatial abilities used in the navigation of these virtual environments accurately represents the spatial abilities used in the real-world. The aim of the current study is to investigate the spatial relationships between real and virtual environments to better understand how well the virtual experiences parallel the same experiences in the real-world. Here, we performed three independent experiments to examine whether spatial information about object location, environment layout, and navigation strategy transfers between parallel real-world and virtual-world experiences. We show that while general spatial information does transfer between real and virtual environments, there are several limitations of the virtual experience. Compared to the real-world, the use of information in the virtual-world is less flexible, especially when testing spatial memory from a novel location, and the way in which we navigate these experiences are different as the perceptual and proprioceptive feedback gained from the real-world experience can influence navigation strategy.

Keywords

References

  1. Neurodegener Dis. 2010;7(1-3):148-52 [PMID: 20197695]
  2. Psychol Res. 2007 May;71(3):322-32 [PMID: 16953434]
  3. J R Soc Interface. 2020 Jun;17(167):20200116 [PMID: 32517631]
  4. Exp Brain Res. 1993;93(3):462-70 [PMID: 8519335]
  5. Nature. 2015 Jul 23;523(7561):419-24 [PMID: 26176924]
  6. Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14786-8 [PMID: 21876159]
  7. Neuron. 2003 Mar 6;37(5):877-88 [PMID: 12628177]
  8. Mem Cognit. 1999 Jul;27(4):741-50 [PMID: 10479831]
  9. Front Aging Neurosci. 2013 Feb 20;5:1 [PMID: 23430962]
  10. J Neurosci. 2016 Jun 15;36(24):6371-81 [PMID: 27307227]
  11. Front Hum Neurosci. 2014 Aug 04;8:571 [PMID: 25140139]
  12. Behav Processes. 2015 Feb;111:42-50 [PMID: 25464337]
  13. PLoS One. 2019 Mar 18;14(3):e0213272 [PMID: 30883560]
  14. Science. 2013 May 10;340(6133):756-9 [PMID: 23661762]
  15. Cereb Cortex. 2019 Jun 1;29(6):2748-2758 [PMID: 30916744]
  16. Nat Rev Neurosci. 2006 Aug;7(8):663-78 [PMID: 16858394]
  17. Psychon Bull Rev. 2017 Apr;24(2):582-590 [PMID: 27714666]
  18. Nature. 2009 Oct 15;461(7266):941-6 [PMID: 19829374]
  19. J Neurosci. 2015 Dec 09;35(49):16116-25 [PMID: 26658864]
  20. Horm Behav. 2005 Mar;47(3):326-35 [PMID: 15708762]
  21. Behav Brain Res. 1998 Jun;93(1-2):185-90 [PMID: 9659999]
  22. Neuropsychologia. 2016 Jan 8;80:90-101 [PMID: 26593960]
  23. Nat Neurosci. 2013 Sep;16(9):1188-90 [PMID: 23912946]
  24. Behav Brain Res. 2011 Nov 20;225(1):117-25 [PMID: 21771614]
  25. Front Behav Neurosci. 2019 Mar 21;13:57 [PMID: 30949036]
  26. Neurology. 2008 Sep 16;71(12):888-95 [PMID: 18794491]
  27. J Neurosci. 2003 Jul 2;23(13):5945-52 [PMID: 12843299]
  28. Mem Cognit. 2019 Feb;47(2):212-228 [PMID: 30229479]
  29. J Exp Biol. 2019 Feb 6;222(Pt Suppl 1): [PMID: 30728232]
  30. J Neurosci. 2007 Sep 19;27(38):10078-83 [PMID: 17881514]
  31. Eur J Neurosci. 2003 Jul;18(1):215-9 [PMID: 12859354]
  32. J R Soc Interface. 2016 Sep;13(122): [PMID: 27605166]
  33. Psychol Rev. 1948 Jul;55(4):189-208 [PMID: 18870876]
  34. J Neurosci. 1990 Feb;10(2):420-35 [PMID: 2303851]
  35. Science. 1998 May 8;280(5365):921-4 [PMID: 9572740]
  36. Nat Neurosci. 2013 Mar;16(3):325-31 [PMID: 23396102]
  37. Neurobiol Learn Mem. 1996 Jan;65(1):65-72 [PMID: 8673408]
  38. Neuron. 2017 Aug 30;95(5):1019-1035 [PMID: 28858613]
  39. Psychol Bull. 1995 Mar;117(2):250-70 [PMID: 7724690]
  40. Behav Neural Biol. 1988 May;49(3):332-43 [PMID: 3408445]
  41. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4398-403 [PMID: 10716738]
  42. Brain Res. 1971 Nov;34(1):171-5 [PMID: 5124915]
  43. Sci Rep. 2017 Dec 22;7(1):18109 [PMID: 29273759]
  44. Front Hum Neurosci. 2018 Jun 21;12:250 [PMID: 29977198]
  45. Neuron. 2019 Nov 6;104(3):611-622.e7 [PMID: 31540825]
  46. Philos Trans R Soc Lond B Biol Sci. 2009 May 27;364(1522):1407-16 [PMID: 19528024]
  47. Behav Brain Res. 2020 Jul 15;390:112667 [PMID: 32439346]
  48. Nature. 2003 Sep 11;425(6954):184-8 [PMID: 12968182]
  49. J Neurosci. 2015 Nov 18;35(46):15442-52 [PMID: 26586830]
  50. J Neurosci. 2011 Oct 26;31(43):15264-8 [PMID: 22031872]
  51. J Neurosci. 2005 Sep 21;25(38):8680-5 [PMID: 16177036]
  52. Front Behav Neurosci. 2019 Jun 18;13:128 [PMID: 31275121]
  53. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14385-90 [PMID: 14614143]
  54. Neuron. 2015 Nov 4;88(3):578-89 [PMID: 26539893]
  55. Neurobiol Aging. 2015 Nov;36(11):3067-3078 [PMID: 26281759]
  56. Multisens Res. 2020 Mar 17;33(4-5):479-503 [PMID: 31972540]
  57. Cold Spring Harb Perspect Biol. 2015 Feb 02;7(2):a021808 [PMID: 25646382]
  58. Curr Biol. 2011 Dec 20;21(24):2109-14 [PMID: 22169537]

Grants

  1. R21 AG056145/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0virtualspatialenvironmentsreal-worldexperiencesusednavigationinformationVirtualcognitionhumansinvestigatenavigateenvironmentmemoryabilitiesrealparallellocationstrategyvirtual-worldtransferexperiencecommonlyassesspastdecadesresearcherspeoplelearnremembersurroundingcombinationtoolselectroencephalogramneuroimagingelectrophysiologyproveninvaluableabilityhelpelucidateunderlyingneuralmechanismslearningHowevercriticalassumptionmadewheneverusingaccuratelyrepresentsaimcurrentstudyrelationshipsbetterunderstandwellperformedthreeindependentexperimentsexaminewhetherobjectlayouttransfersshowgeneralseverallimitationsCompareduselessflexibleespeciallytestingnovelwaydifferentperceptualproprioceptivefeedbackgainedcaninfluenceExploringSpatialRelationshipsRealExperiences:TransfersDoesn'treal-environmentsVEreality

Similar Articles

Cited By