Shining a spotlight on m6A and the vital role of RNA modification in endometrial cancer: a review.

Zujian Jin, Jingjing Sheng, Yingying Hu, Yu Zhang, Xiaoxia Wang, Yiping Huang
Author Information
  1. Zujian Jin: Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
  2. Jingjing Sheng: Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
  3. Yingying Hu: Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
  4. Yu Zhang: Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
  5. Xiaoxia Wang: Reproductive Medicine Center, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China.
  6. Yiping Huang: Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.

Abstract

RNA modifications are mostly dynamically reversible post-transcriptional modifications, of which m6A is the most prevalent in eukaryotic mRNAs. A growing number of studies indicate that RNA modification can finely tune gene expression and modulate RNA metabolic homeostasis, which in turn affects the self-renewal, proliferation, apoptosis, migration, and invasion of tumor cells. Endometrial carcinoma (EC) is the most common gynecologic tumor in developed countries. Although it can be diagnosed early in the onset and have a preferable prognosis, some cases might develop and become metastatic or recurrent, with a worse prognosis. Fortunately, immunotherapy and targeted therapy are promising methods of treating endometrial cancer patients. Gene modifications may also contribute to these treatments, as is especially the case with recent developments of new targeted therapeutic genes and diagnostic biomarkers for EC, even though current findings on the relationship between RNA modification and EC are still very limited, especially m6A. For example, what is the elaborate mechanism by which RNA modification affects EC progression? Taking m6A modification as an example, what is the conversion mode of methylation and demethylation for RNAs, and how to achieve selective recognition of specific RNA? Understanding how they cope with various stimuli as part of and biological development, disease or tumor occurrence and development, and other processes is valuable and RNA modifications provide a distinctive insight into genetic information. The roles of these processes in coping with various stimuli, biological development, disease, or tumor development and are self-evident and may become a new direction for cancer in the future. In this review, we summarize the category, characteristics, and therapeutic precis of RNA modification, m6A in particular, with the purpose of seeking the systematic regulation axis related to RNA modification to provide a better solution for the treatment of EC.

Keywords

References

  1. Nucleic Acids Res. 2017 Jun 2;45(10):6051-6063 [PMID: 28334903]
  2. Nat Commun. 2021 Mar 2;12(1):1394 [PMID: 33654093]
  3. Int J Mol Sci. 2021 Feb 25;22(5): [PMID: 33669072]
  4. Comput Struct Biotechnol J. 2022 Nov 11;20:6244-6249 [PMID: 36420165]
  5. Nat Cell Biol. 2019 Aug;21(8):978-990 [PMID: 31358969]
  6. Gene. 2023 Feb 5;852:147052 [PMID: 36395970]
  7. Bioinformatics. 2020 Jun 1;36(11):3528-3536 [PMID: 32163126]
  8. Nucleic Acids Res. 2012 Jun;40(11):5023-33 [PMID: 22344696]
  9. Mol Cancer. 2021 Jan 18;20(1):18 [PMID: 33461542]
  10. Signal Transduct Target Ther. 2022 Sep 22;7(1):334 [PMID: 36138023]
  11. Methods Mol Biol. 2021;2284:507-518 [PMID: 33835460]
  12. Transl Res. 2015 Jan;165(1):28-35 [PMID: 24768686]
  13. RNA Biol. 2021 Dec;18(12):2354-2362 [PMID: 33906563]
  14. Database (Oxford). 2020 Jan 1;2020: [PMID: 32608478]
  15. Nucleic Acids Res. 2023 Jan 6;51(D1):D1188-D1195 [PMID: 36420891]
  16. Cell. 2014 Sep 25;159(1):148-162 [PMID: 25219674]
  17. Biomark Res. 2022 Apr 1;10(1):15 [PMID: 35365216]
  18. Nucleic Acids Res. 2022 Jan 7;50(D1):D231-D235 [PMID: 34893873]
  19. Brief Bioinform. 2017 Jan;18(1):98-104 [PMID: 26851225]
  20. Cancer Res. 2017 Jun 15;77(12):3306-3316 [PMID: 28428278]
  21. Cancer Cell. 2023 Jul 10;41(7):1294-1308.e8 [PMID: 37236197]
  22. Mol Cell. 2019 Sep 19;75(6):1188-1202.e11 [PMID: 31399345]
  23. Nucleic Acids Res. 2021 Jan 8;49(D1):D1396-D1404 [PMID: 33010174]
  24. Genes (Basel). 2021 Feb 26;12(3): [PMID: 33652758]
  25. Brief Bioinform. 2021 May 20;22(3): [PMID: 32392583]
  26. Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):240-252 [PMID: 30593929]
  27. Cancer Cell. 2022 Dec 12;40(12):1566-1582.e10 [PMID: 36306790]
  28. Nat Cell Biol. 2018 Sep;20(9):1074-1083 [PMID: 30154548]
  29. Cell Metab. 2022 Mar 1;34(3):355-377 [PMID: 35123658]
  30. Nucleic Acids Res. 2017 Jan 4;45(D1):D104-D114 [PMID: 28053162]
  31. J Oncol. 2022 Mar 29;2022:1531474 [PMID: 35392434]
  32. J Cell Mol Med. 2021 Sep;25(18):8615-8627 [PMID: 34312987]
  33. Mol Ther. 2021 May 5;29(5):1821-1837 [PMID: 33484966]
  34. Nat Biotechnol. 2004 Aug;22(8):1001-5 [PMID: 15258596]
  35. Epigenetics. 2010 Aug 16;5(6):491-8 [PMID: 20543579]
  36. Biomolecules. 2022 Jul 04;12(7): [PMID: 35883495]
  37. Nature. 2021 May;593(7860):597-601 [PMID: 33902106]
  38. Mol Cancer. 2021 Apr 15;20(1):69 [PMID: 33858437]
  39. Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2116251119 [PMID: 35290126]
  40. Gynecol Oncol. 2007 Oct;107(1):143-53 [PMID: 17692907]
  41. Signal Transduct Target Ther. 2021 Feb 21;6(1):74 [PMID: 33611339]
  42. Bioinformatics. 2021 Jun 9;37(9):1218-1224 [PMID: 33135044]
  43. Gynecol Oncol. 2006 Oct;103(1):321-8 [PMID: 16701802]
  44. RNA. 2013 Dec;19(12):1684-92 [PMID: 24149843]
  45. Br J Pharmacol. 2023 Jan;180(1):5-24 [PMID: 36196023]
  46. Database (Oxford). 2014 Mar 28;2014:bau023 [PMID: 24682734]
  47. Nat Commun. 2020 Jun 5;11(1):2834 [PMID: 32503981]
  48. Genes (Basel). 2022 Jul 22;13(8): [PMID: 35893039]
  49. Nucleic Acids Res. 2013 Jan;41(Database issue):D268-72 [PMID: 23155061]
  50. Clin Transl Med. 2022 Jan;12(1):e703 [PMID: 35073459]
  51. Translation (Austin). 2014 Jan 29;2(1):e27738 [PMID: 26779400]
  52. J Clin Lab Anal. 2021 Sep;35(9):e23942 [PMID: 34347888]
  53. Nucleic Acids Res. 2017 Jul 7;45(12):7401-7415 [PMID: 28472312]
  54. Nucleic Acids Res. 2022 Jan 7;50(D1):D196-D203 [PMID: 34986603]
  55. Nucleic Acids Res. 2010 Mar;38(5):e34 [PMID: 20008100]
  56. Nat Chem Biol. 2016 May;12(5):311-6 [PMID: 26863410]
  57. Int J Mol Sci. 2022 Jul 08;23(14): [PMID: 35886919]
  58. J Cancer. 2021 May 5;12(13):3809-3818 [PMID: 34093789]
  59. Nucleic Acids Res. 2023 Jan 6;51(D1):D315-D327 [PMID: 36408909]
  60. Nat Rev Mol Cell Biol. 2019 Oct;20(10):608-624 [PMID: 31520073]
  61. Nucleic Acids Res. 2021 Jan 8;49(D1):D1405-D1412 [PMID: 33021671]
  62. Front Microbiol. 2022 Jun 15;13:870816 [PMID: 35783391]
  63. J Clin Lab Anal. 2023 Jan;37(1):e24813 [PMID: 36525280]
  64. Nat Chem Biol. 2015 Aug;11(8):592-7 [PMID: 26075521]
  65. J Am Chem Soc. 2017 Dec 6;139(48):17249-17252 [PMID: 29140688]
  66. Biomark Res. 2023 Apr 21;11(1):43 [PMID: 37085864]
  67. Methods. 2016 Sep 1;107:34-41 [PMID: 27016142]
  68. Anal Biochem. 2020 Nov 15;609:113905 [PMID: 32805275]
  69. Cancer Cell. 2019 Apr 15;35(4):677-691.e10 [PMID: 30991027]
  70. Cell Biol Int. 2020 Dec;44(12):2524-2531 [PMID: 32869897]
  71. Nucleic Acids Res. 2015 Jan;43(1):373-84 [PMID: 25452335]
  72. Cancer Lett. 2012 Jun 1;319(1):89-97 [PMID: 22222214]
  73. Theranostics. 2021 Jan 1;11(3):1100-1114 [PMID: 33391523]
  74. Nucleic Acids Res. 2009 Apr;37(6):e47 [PMID: 19270066]
  75. Cell. 2015 Sep 10;162(6):1299-308 [PMID: 26321680]
  76. Front Genet. 2020 Mar 12;11:88 [PMID: 32226440]
  77. J Am Chem Soc. 2014 Aug 20;136(33):11582-5 [PMID: 25073028]
  78. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36525367]
  79. Nucleic Acids Res. 2016 Jun 2;44(10):e91 [PMID: 26896799]
  80. Nature. 2017 Jan 19;541(7637):371-375 [PMID: 28002401]
  81. Cell Death Discov. 2022 Jun 8;8(1):279 [PMID: 35676262]
  82. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5263-8 [PMID: 27114554]
  83. Oncogenesis. 2020 Sep 11;9(9):81 [PMID: 32913192]
  84. PLoS One. 2016 Oct 10;11(10):e0162707 [PMID: 27723837]
  85. Wiley Interdiscip Rev RNA. 2021 Jan;12(1):e1618 [PMID: 32686365]
  86. Nat Rev Cancer. 2020 Jun;20(6):303-322 [PMID: 32300195]
  87. Cardiovasc Res. 2022 Jun 22;118(7):1680-1692 [PMID: 33956076]
  88. Nat Commun. 2022 Feb 14;13(1):859 [PMID: 35165263]
  89. Genome Biol. 2020 Apr 28;21(1):100 [PMID: 32345346]
  90. Nat Rev Genet. 2021 Feb;22(2):119-131 [PMID: 33188361]
  91. Elife. 2019 Oct 24;8: [PMID: 31647415]
  92. J Biomol Screen. 2016 Mar;21(3):290-7 [PMID: 26701100]
  93. Cell Res. 2019 Jan;29(1):23-41 [PMID: 30514900]
  94. Nature. 2012 Apr 29;485(7397):201-6 [PMID: 22575960]
  95. Mol Cancer Ther. 2006 Sep;5(9):2203-10 [PMID: 16985053]
  96. Mol Cancer. 2019 Dec 4;18(1):176 [PMID: 31801551]
  97. Hum Genomics. 2022 Apr 18;16(1):12 [PMID: 35436972]
  98. Mol Cancer. 2023 May 9;22(1):81 [PMID: 37161388]
  99. Oncogene. 2023 Jun;42(24):1980-1993 [PMID: 37130916]
  100. Cell. 2012 Jun 22;149(7):1635-46 [PMID: 22608085]
  101. Small. 2023 Jun 13;:e2300096 [PMID: 37312613]
  102. CA Cancer J Clin. 2023 Jan;73(1):17-48 [PMID: 36633525]
  103. Cancer Res. 2021 Jul 1;81(13):3431-3440 [PMID: 34228629]
  104. Cell Res. 2017 May;27(5):606-625 [PMID: 28418038]
  105. RNA Biol. 2021 Sep;18(9):1265-1278 [PMID: 33103587]
  106. Front Immunol. 2023 Mar 30;14:1144774 [PMID: 37063837]
  107. Mol Cell. 2019 Jun 20;74(6):1304-1316.e8 [PMID: 31031084]
  108. Nucleic Acids Res. 2016 Jan 4;44(D1):D259-65 [PMID: 26464443]
  109. Nat Cell Biol. 2018 Mar;20(3):285-295 [PMID: 29476152]
  110. Sci Rep. 2022 Nov 5;12(1):18813 [PMID: 36335189]
  111. Curr Opin Obstet Gynecol. 2023 Jun 1;35(3):270-278 [PMID: 36943683]
  112. Nucleic Acids Res. 2021 Jan 8;49(D1):D1012-D1019 [PMID: 33104797]
  113. Mol Cell. 2019 Oct 3;76(1):70-81.e9 [PMID: 31445886]
  114. Nature. 2016 Feb 25;530(7591):441-6 [PMID: 26863196]
  115. Wiley Interdiscip Rev RNA. 2022 Jul;13(4):e1702 [PMID: 34816607]
  116. Cancer Discov. 2022 Jan;12(1):31-46 [PMID: 35022204]
  117. J Cancer. 2020 Sep 9;11(21):6390-6401 [PMID: 33033522]
  118. Lab Invest. 2021 Jun;101(6):775-784 [PMID: 33692441]
  119. Cell Biol Int. 2021 Jun;45(6):1269-1277 [PMID: 33559954]
  120. Genomics Proteomics Bioinformatics. 2022 Sep 9;: [PMID: 36096444]
  121. Nucleic Acids Res. 2011 Jan;39(Database issue):D195-201 [PMID: 21071406]
  122. Medicine (Baltimore). 2021 Dec 10;100(49):e27689 [PMID: 34889221]
  123. Neoplasia. 2022 Mar;25:18-27 [PMID: 35078134]
  124. Nucleic Acids Res. 2019 Apr 23;47(7):e41 [PMID: 30993345]
  125. RNA Biol. 2019 Nov;16(11):1586-1591 [PMID: 31390943]
  126. Nucleic Acids Res. 2018 Jan 4;46(D1):D85-D91 [PMID: 29059382]
  127. Cell. 2017 Jun 15;169(7):1187-1200 [PMID: 28622506]
  128. Cancer Lett. 2020 Apr 1;474:127-137 [PMID: 31991154]
  129. RNA. 2017 Dec;23(12):1754-1769 [PMID: 28855326]
  130. J Cancer. 2020 Jul 25;11(19):5612-5622 [PMID: 32913456]
  131. Nucleic Acids Res. 2014 Apr;42(6):3998-4007 [PMID: 24413662]
  132. Aging (Albany NY). 2021 Jun 16;13(12):16287-16315 [PMID: 34230220]
  133. Nucleic Acids Res. 2021 Jan 8;49(D1):D134-D143 [PMID: 32821938]
  134. World J Surg Oncol. 2023 Jan 31;21(1):27 [PMID: 36721236]
  135. Nucleic Acids Res. 2023 Jan 6;51(D1):D269-D279 [PMID: 36300630]
  136. Nucleic Acids Res. 2023 Jan 6;51(D1):D106-D116 [PMID: 36382409]
  137. Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514 [PMID: 32442275]
  138. Cell. 2018 Dec 13;175(7):1872-1886.e24 [PMID: 30449621]
  139. Nat Commun. 2023 Mar 24;14(1):1636 [PMID: 36964127]
  140. Brief Bioinform. 2021 Mar 22;22(2):1929-1939 [PMID: 32047897]

Word Cloud

Created with Highcharts 10.0.0RNAmodificationm6AECmodificationstumordevelopmentendometrialcancercanaffectsprognosisbecometargetedtherapymayespeciallynewtherapeuticexamplevariousstimulibiologicaldiseaseprocessesprovidereviewmostlydynamicallyreversiblepost-transcriptionalprevalenteukaryoticmRNAsgrowingnumberstudiesindicatefinelytunegeneexpressionmodulatemetabolichomeostasisturnself-renewalproliferationapoptosismigrationinvasioncellsEndometrialcarcinomacommongynecologicdevelopedcountriesAlthoughdiagnosedearlyonsetpreferablecasesmightdevelopmetastaticrecurrentworseFortunatelyimmunotherapypromisingmethodstreatingpatientsGenealsocontributetreatmentscaserecentdevelopmentsgenesdiagnosticbiomarkerseventhoughcurrentfindingsrelationshipstilllimitedelaboratemechanismprogression?TakingconversionmodemethylationdemethylationRNAsachieveselectiverecognitionspecificRNA?Understandingcopepartoccurrencevaluabledistinctiveinsightgeneticinformationrolescopingself-evidentdirectionfuturesummarizecategorycharacteristicsprecisparticularpurposeseekingsystematicregulationaxisrelatedbettersolutiontreatmentShiningspotlightvitalrolecancer:5-methylcytidinem5cN6-methyladenosine

Similar Articles

Cited By