MDM2 Regulation of HIF Signaling Causes Microvascular Dysfunction in Hypertrophic Cardiomyopathy.

Puneeth Shridhar, Michael S Glennon, Soumojit Pal, Christina J Waldron, Ethan J Chetkof, Payel Basak, Nicolas G Clavere, Dipanjan Banerjee, Sebastien Gingras, Jason R Becker
Author Information
  1. Puneeth Shridhar: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA.
  2. Michael S Glennon: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA.
  3. Soumojit Pal: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA. ORCID
  4. Christina J Waldron: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA.
  5. Ethan J Chetkof: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA.
  6. Payel Basak: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA.
  7. Nicolas G Clavere: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA.
  8. Dipanjan Banerjee: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA. ORCID
  9. Sebastien Gingras: Department of Immunology (S.G.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA. ORCID
  10. Jason R Becker: Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA. ORCID

Abstract

BACKGROUND: Microvasculature dysfunction is a common finding in pathologic remodeling of the heart and is thought to play an important role in the pathogenesis of hypertrophic cardiomyopathy (HCM), a disease caused by sarcomere gene mutations. We hypothesized that microvascular dysfunction in HCM was secondary to abnormal microvascular growth and could occur independent of ventricular hypertrophy.
METHODS: We used multimodality imaging methods to track the temporality of microvascular dysfunction in HCM mouse models harboring mutations in the sarcomere genes (cardiac myosin binding protein C3) or (myosin heavy chain 6). We performed complementary molecular methods to assess protein quantity, interactions, and post-translational modifications to identify mechanisms regulating this response. We manipulated select molecular pathways in vivo using both genetic and pharmacological methods to validate these mechanisms.
RESULTS: We found that microvascular dysfunction in our HCM models occurred secondary to reduced myocardial capillary growth during the early postnatal time period and could occur before the onset of myocardial hypertrophy. We discovered that the E3 ubiquitin protein ligase MDM2 (murine double minute 2) dynamically regulates the protein stability of both HIF1α (hypoxia-inducible factor 1 alpha) and HIF2α (hypoxia-inducible factor 2 alpha)/EPAS1 (endothelial PAS domain protein 1) through canonical and noncanonical mechanisms. The resulting HIF imbalance leads to reduced proangiogenic gene expression during a key period of myocardial capillary growth. Reducing MDM2 protein levels by genetic or pharmacological methods normalized HIF protein levels and prevented the development of microvascular dysfunction in both HCM models.
CONCLUSIONS: Our results show that sarcomere mutations induce cardiomyocyte MDM2 signaling during the earliest stages of disease, and this leads to long-term changes in the myocardial microenvironment.

Keywords

References

  1. Circ Res. 2017 Sep 15;121(7):749-770 [PMID: 28912181]
  2. J Am Coll Cardiol. 2009 Jul 14;54(3):201-11 [PMID: 19589432]
  3. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12009-14 [PMID: 14507994]
  4. EMBO Mol Med. 2013 Jul;5(7):1128-45 [PMID: 23716398]
  5. J Am Soc Nephrol. 2002 Mar;13(3):806-816 [PMID: 11856789]
  6. Cell. 1990 Sep 7;62(5):999-1006 [PMID: 1975517]
  7. Genes Dev. 1993 Jul;7(7A):1126-32 [PMID: 8319905]
  8. J Am Heart Assoc. 2021 Aug 3;10(15):e020227 [PMID: 34310159]
  9. J Cell Physiol. 2005 Aug;204(2):364-9 [PMID: 15880652]
  10. J Appl Physiol (1985). 2017 Dec 1;123(6):1676-1681 [PMID: 28819000]
  11. Circulation. 2010 Mar 2;121(8):997-1004 [PMID: 20159828]
  12. J Clin Invest. 2007 Nov;117(11):3198-210 [PMID: 17975667]
  13. JACC Heart Fail. 2014 Aug;2(4):358-67 [PMID: 25023822]
  14. Eur Heart J. 2014 May;35(17):1101-11 [PMID: 24366916]
  15. Genes Dev. 2000 Jan 1;14(1):34-44 [PMID: 10640274]
  16. J Am Coll Cardiol. 2015 Feb 17;65(6):560-9 [PMID: 25677315]
  17. Cell Metab. 2015 Feb 3;21(2):174-182 [PMID: 25651172]
  18. J Am Heart Assoc. 2021 Aug 3;10(15):e021768 [PMID: 34323119]
  19. N Engl J Med. 2003 Sep 11;349(11):1027-35 [PMID: 12968086]
  20. J Am Coll Cardiol. 2006 Mar 7;47(5):1043-8 [PMID: 16516091]
  21. Science. 2013 Oct 4;342(6154):111-4 [PMID: 24092743]
  22. Cancer Cell Int. 2019 Aug 22;19:216 [PMID: 31440117]
  23. Genome Biol. 2016 Jul 05;17(1):148 [PMID: 27380939]
  24. Basic Res Cardiol. 2012 Jan;107(1):235 [PMID: 22189562]
  25. J Am Heart Assoc. 2021 Oct 19;10(20):e021936 [PMID: 34634920]
  26. Angiogenesis. 2011 Sep;14(3):255-66 [PMID: 21484514]
  27. Nat Methods. 2006 Dec;3(12):995-1000 [PMID: 17072308]
  28. Biology (Basel). 2021 Apr 07;10(4): [PMID: 33917130]
  29. Mol Cell Biol. 2006 Jan;26(1):192-8 [PMID: 16354690]
  30. N Engl J Med. 1987 Apr 2;316(14):844-52 [PMID: 3547135]
  31. J Am Coll Cardiol. 2021 Sep 28;78(13):1352-1371 [PMID: 34556322]
  32. Eur Heart J. 2017 Apr 21;38(16):1222-1229 [PMID: 28204448]
  33. Nature. 2007 Mar 22;446(7134):444-8 [PMID: 17334357]
  34. Circ Res. 2018 Feb 16;122(4):624-638 [PMID: 29449364]
  35. JCI Insight. 2017 Feb 23;2(4):e90656 [PMID: 28239655]
  36. Nat Rev Mol Cell Biol. 2004 May;5(5):343-54 [PMID: 15122348]
  37. Dev Cell. 2016 Dec 19;39(6):724-739 [PMID: 27997827]
  38. Science. 2001 Apr 20;292(5516):464-8 [PMID: 11292862]
  39. Physiol Rep. 2016 Jun;4(11): [PMID: 27302991]
  40. Genes Dis. 2016 Dec 14;4(1):19-24 [PMID: 30258904]
  41. Basic Res Cardiol. 2021 Apr 19;116(1):26 [PMID: 33876316]
  42. Histochem Cell Biol. 2015 Feb;143(2):225-34 [PMID: 25534591]
  43. Heart. 2020 Jun;106(11):824-829 [PMID: 31822572]
  44. Eur Heart J. 2018 Oct 1;39(37):3439-3450 [PMID: 30165580]
  45. Dev Cell. 2011 Aug 16;21(2):193-215 [PMID: 21839917]
  46. Cells. 2018 May 10;7(5): [PMID: 29748481]
  47. J Clin Invest. 2010 Oct;120(10):3520-9 [PMID: 20811150]
  48. J Vis Exp. 2015 Apr 13;(98):e52598 [PMID: 25938185]
  49. Annu Rev Physiol. 2014;76:39-56 [PMID: 23988176]
  50. Nat Med. 2021 Oct;27(10):1818-1824 [PMID: 34556856]
  51. JACC Cardiovasc Imaging. 2019 Aug;12(8 Pt 2):1699-1708 [PMID: 30660522]
  52. J Clin Invest. 2006 Jun;116(6):1547-60 [PMID: 16741575]
  53. J Muscle Res Cell Motil. 2012 May;33(1):5-15 [PMID: 22076249]
  54. Nat Rev Cardiol. 2015 Jan;12(1):48-62 [PMID: 25311229]
  55. Nature. 1997 May 15;387(6630):299-303 [PMID: 9153396]
  56. Science. 1996 May 3;272(5262):731-4 [PMID: 8614836]
  57. J Clin Invest. 2022 May 16;132(10): [PMID: 35316214]
  58. Circ Res. 2009 Jul 31;105(3):239-48 [PMID: 19590044]
  59. Nat Rev Cardiol. 2009 Aug;6(8):515-23 [PMID: 19528962]
  60. Immunity. 2015 Jan 20;42(1):18-27 [PMID: 25607456]
  61. J Biol Chem. 2014 Aug 15;289(33):22785-22797 [PMID: 24982421]
  62. Stroke. 2020 Nov;51(11):3264-3270 [PMID: 32998653]
  63. J Am Coll Cardiol. 2011 Aug 16;58(8):839-48 [PMID: 21835320]
  64. Oncogene. 2020 Jul;39(29):5228-5239 [PMID: 32555333]
  65. PLoS One. 2017 Dec 21;12(12):e0189861 [PMID: 29267372]

Grants

  1. R01 HL136824/NHLBI NIH HHS
  2. R56 HL160890/NHLBI NIH HHS

MeSH Term

Mice
Animals
Proto-Oncogene Proteins c-mdm2
Cardiomyopathy, Hypertrophic
Myocardium
Myocytes, Cardiac
Sarcomeres
Mutation
Hypertrophy
Myosin Heavy Chains

Chemicals

Proto-Oncogene Proteins c-mdm2
Myosin Heavy Chains

Word Cloud

Created with Highcharts 10.0.0proteindysfunctionHCMmicrovascularsarcomeremethodsmyocardialMDM2mutationsgrowthmodelsmyosinmechanismsHIFhypertrophiccardiomyopathydiseasegenesecondaryoccurhypertrophyheavymoleculargeneticpharmacologicalreducedcapillaryperiod2hypoxia-induciblefactor1alphaleadslevelsBACKGROUND:MicrovasculaturecommonfindingpathologicremodelingheartthoughtplayimportantrolepathogenesiscausedhypothesizedabnormalindependentventricularMETHODS:usedmultimodalityimagingtracktemporalitymouseharboringgenescardiacbindingC3chain6performedcomplementaryassessquantityinteractionspost-translationalmodificationsidentifyregulatingresponsemanipulatedselectpathwaysvivousingvalidateRESULTS:foundoccurredearlypostnataltimeonsetdiscoveredE3ubiquitinligasemurinedoubleminutedynamicallyregulatesstabilityHIF1αHIF2α/EPAS1endothelialPASdomaincanonicalnoncanonicalresultingimbalanceproangiogenicexpressionkeyReducingnormalizedpreventeddevelopmentCONCLUSIONS:resultsshowinducecardiomyocytesignalingearlieststageslong-termchangesmicroenvironmentRegulationSignalingCausesMicrovascularDysfunctionHypertrophicCardiomyopathycapillarieshypoxiamyocardiumchainsproteasomeendopeptidasecomplex

Similar Articles

Cited By