Molecular Docking and Molecular Dynamics Simulations in Related to : An Update and Literature Review.

Mabel R Challapa-Mamani, Eduardo Tom��s-Alvarado, Angela Espinoza-Baigorria, Darwin A Le��n-Figueroa, Ranjit Sah, Alfonso J Rodriguez-Morales, Joshuan J Barboza
Author Information
  1. Mabel R Challapa-Mamani: Escuela de Medicina, Universidad Cesar Vallejo, Trujillo 13007, Peru. ORCID
  2. Eduardo Tom��s-Alvarado: Hospital General Regional 17, Instituto Mexicano del Seguro Social, Canc��n 75533, Mexico. ORCID
  3. Angela Espinoza-Baigorria: Escuela de Medicina, Universidad Privada Antenor Orrego, Trujillo 13008, Peru.
  4. Darwin A Le��n-Figueroa: Facultad de Medicina Humana, Universidad San Mart��n de Porres, Chiclayo 14006, Peru. ORCID
  5. Ranjit Sah: Department of Clinical Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal. ORCID
  6. Alfonso J Rodriguez-Morales: Faculty of Health Sciences, Universidad Cient��fica del Sur, Lima 150152, Peru. ORCID
  7. Joshuan J Barboza: Escuela de Medicina, Universidad Cesar Vallejo, Trujillo 13007, Peru.

Abstract

Leishmaniasis, a disease caused by parasites and transmitted via sandflies, presents in two main forms: cutaneous and visceral, the latter being more severe. With 0.7 to 1 million new cases each year, primarily in Brazil, diagnosing remains challenging due to diverse disease manifestations. Traditionally, the identification of species is inferred from clinical and epidemiological data. Advances in disease management depend on technological progress and the improvement of parasite identification programs. Current treatments, despite the high incidence, show limited efficacy due to factors like cost, toxicity, and lengthy regimens causing poor adherence and resistance development. Diagnostic techniques have improved but a significant gap remains between scientific progress and application in endemic areas. Complete genomic sequence knowledge of allows for the identification of therapeutic targets. With the aid of computational tools, testing, searching, and detecting affinity in molecular docking are optimized, and strategies that assess advantages among different options are developed. The review focuses on the use of molecular docking and molecular dynamics (MD) simulation for drug development. It also discusses the limitations and advancements of current treatments, emphasizing the importance of new techniques in improving disease management.

Keywords

References

  1. J Comput Aided Mol Des. 2012 Jan;26(1):15-26 [PMID: 22183577]
  2. Angew Chem Int Ed Engl. 2020 Sep 1;59(36):15618-15625 [PMID: 32115863]
  3. J Biomol Struct Dyn. 2018 Aug;36(10):2678-2693 [PMID: 28797195]
  4. J Enzyme Inhib Med Chem. 2020 Dec;35(1):639-649 [PMID: 32048531]
  5. J Biomol Struct Dyn. 2021 Mar;39(5):1838-1852 [PMID: 32141397]
  6. J Clin Microbiol. 2003 Jul;41(7):3147-53 [PMID: 12843055]
  7. J Proteomics. 2020 Jul 15;223:103800 [PMID: 32380292]
  8. Metabolites. 2023 Jan 06;13(1): [PMID: 36677018]
  9. PLoS One. 2012;7(5):e35671 [PMID: 22693548]
  10. Int J Mol Sci. 2019 Nov 25;20(23): [PMID: 31775321]
  11. Am J Clin Dermatol. 2015 Apr;16(2):99-109 [PMID: 25687688]
  12. J Biomol Struct Dyn. 2014;32(11):1707-19 [PMID: 24028527]
  13. J Biomol Struct Dyn. 2016 Nov;34(11):2367-86 [PMID: 26551589]
  14. J Biomol Struct Dyn. 2023;41(21):12128-12141 [PMID: 36632757]
  15. Front Immunol. 2017 Sep 15;8:1127 [PMID: 28959260]
  16. Comb Chem High Throughput Screen. 2017;20(3):255-271 [PMID: 28116998]
  17. J Comput Chem. 2020 Jun 30;41(17):1606-1615 [PMID: 32267975]
  18. Front Pharmacol. 2023 Apr 19;14:1140494 [PMID: 37153804]
  19. Int J Mol Sci. 2021 Jun 02;22(11): [PMID: 34199677]
  20. J Comput Chem. 2019 Jun 30;40(17):1622-1632 [PMID: 30829435]
  21. Biochemistry. 2006 Aug 1;45(30):9053-8 [PMID: 16866350]
  22. PLoS One. 2009;4(2):e4473 [PMID: 19221587]
  23. BMC Res Notes. 2018 Apr 16;11(1):246 [PMID: 29661206]
  24. Lancet Infect Dis. 2007 Sep;7(9):581-96 [PMID: 17714672]
  25. J Recept Signal Transduct Res. 2017 Feb;37(1):60-70 [PMID: 27147242]
  26. J Chem Inf Model. 2020 Feb 24;60(2):667-683 [PMID: 31922754]
  27. Int J Mol Sci. 2019 Sep 04;20(18): [PMID: 31487867]
  28. Biophys J. 2012 Feb 8;102(3):407-16 [PMID: 22325262]
  29. Parasitology. 2021 May;148(6):655-671 [PMID: 33536086]
  30. J Chem Inf Model. 2018 Feb 26;58(2):490-500 [PMID: 29378136]
  31. Life Sci. 2019 Feb 15;219:163-181 [PMID: 30641084]
  32. Pharmacol Rev. 2021 Oct;73(4):527-565 [PMID: 34907092]
  33. Cell Death Dis. 2019 Oct 24;10(11):808 [PMID: 31649242]
  34. J Chem Inf Model. 2020 Jun 22;60(6):2939-2950 [PMID: 32383873]
  35. J Colloid Interface Sci. 2019 Jul 15;548:244-254 [PMID: 31004957]
  36. Phytomedicine. 2017 Jan 15;24:87-95 [PMID: 28160866]
  37. J Biol Inorg Chem. 2019 Sep;24(6):879-888 [PMID: 31511993]
  38. F1000Res. 2016 Jul 8;5:1610 [PMID: 27853511]
  39. J Cell Biochem. 2018 Mar;119(3):2653-2665 [PMID: 29058760]
  40. J Mol Recognit. 2023 Jul;36(7):e3021 [PMID: 37092713]
  41. J Phys Chem B. 2019 Feb 14;123(6):1294-1301 [PMID: 30665293]
  42. J Biomol Struct Dyn. 2015;33(12):2541-53 [PMID: 26305585]
  43. J Clin Med. 2021 Jun 05;10(11): [PMID: 34198792]
  44. Biology (Basel). 2021 May 01;10(5): [PMID: 34062724]
  45. BMC Bioinformatics. 2020 Jan 9;21(1):10 [PMID: 31918654]
  46. J Biol Chem. 2020 Jul 17;295(29):9934-9947 [PMID: 32471865]
  47. Biochem Biophys Res Commun. 2021 Sep 10;569:193-198 [PMID: 34256188]
  48. Acc Chem Res. 2017 Mar 21;50(3):584-589 [PMID: 28945413]
  49. Sci Rep. 2016 Dec 01;6:37532 [PMID: 27905468]
  50. Essays Biochem. 2011;51:63-80 [PMID: 22023442]
  51. Virulence. 2022 Dec;13(1):903-935 [PMID: 35531875]
  52. Eur J Med Chem. 2021 Nov 5;223:113606 [PMID: 34171661]
  53. Future Med Chem. 2011 Dec;3(16):2079-100 [PMID: 22098354]
  54. J Vector Ecol. 2016 Jun;41(1):103-9 [PMID: 27232131]
  55. J Chem Inf Model. 2019 Jul 22;59(7):3291-3304 [PMID: 31257871]
  56. Front Cell Infect Microbiol. 2022 Jun 02;12:859981 [PMID: 35719359]
  57. Lancet. 2018 Sep 15;392(10151):951-970 [PMID: 30126638]
  58. Int J Biol Macromol. 2021 Apr 15;176:106-116 [PMID: 33556398]
  59. Parasitol Res. 2014 May;113(5):1875-81 [PMID: 24615359]
  60. Mol Aspects Med. 2017 Oct;57:1-29 [PMID: 28159546]
  61. J Infect Dis. 2008 Nov 15;198(10):1565-72 [PMID: 18816188]
  62. Biomolecules. 2020 May 14;10(5): [PMID: 32423068]
  63. Eur J Pharm Sci. 2017 May 1;102:156-160 [PMID: 28279761]

Word Cloud

Created with Highcharts 10.0.0moleculardiseaseidentificationdockingnewremainsduemanagementprogresstreatmentsdevelopmenttechniquesgenomicsequencetherapeutictargetsdynamicsMDsimulationMolecularLeishmaniasiscausedparasitestransmittedviasandfliespresentstwomainforms:cutaneousviscerallattersevere071millioncasesyearprimarilyBrazildiagnosingchallengingdiversemanifestationsTraditionallyspeciesinferredclinicalepidemiologicaldataAdvancesdependtechnologicalimprovementparasiteprogramsCurrentdespitehighincidenceshowlimitedefficacyfactorslikecosttoxicitylengthyregimenscausingpooradherenceresistanceDiagnosticimprovedsignificantgapscientificapplicationendemicareasCompleteknowledgeallowsaidcomputationaltoolstestingsearchingdetectingaffinityoptimizedstrategiesassessadvantagesamongdifferentoptionsdevelopedreviewfocusesusedrugalsodiscusseslimitationsadvancementscurrentemphasizingimportanceimprovingDockingDynamicsSimulationsRelated:UpdateLiteratureReviewleishmaniasis

Similar Articles

Cited By (10)