Multi-Layered Triboelectric Nanogenerators with Controllable Multiple Spikes for Low-Power Artificial Synaptic Devices.

Yong-Jin Park, Yun Goo Ro, Young-Eun Shin, Cheolhong Park, Sangyun Na, Yoojin Chang, Hyunhyub Ko
Author Information
  1. Yong-Jin Park: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
  2. Yun Goo Ro: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea. ORCID
  3. Young-Eun Shin: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
  4. Cheolhong Park: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea. ORCID
  5. Sangyun Na: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
  6. Yoojin Chang: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
  7. Hyunhyub Ko: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea. ORCID

Abstract

In the domains of wearable electronics, robotics, and the Internet of Things, there is a demand for devices with low power consumption and the capability of multiplex sensing, memory, and learning. Triboelectric nanogenerators (TENGs) offer remarkable versatility in this regard, particularly when integrated with synaptic transistors that mimic biological synapses. However, conventional TENGs, generating only two spikes per cycle, have limitations when used in synaptic devices requiring repetitive high-frequency gating signals to perform various synaptic plasticity functions. Herein, a multi-layered micropatterned TENG (M-TENG) consisting of a polydimethylsiloxane (PDMS) film and a composite film that includes 1H,1H,2H,2H-perfluorooctyltrichlorosilane/BaTiO /PDMS are proposed. The M-TENG generates multiple spikes from a single touch by utilizing separate triboelectric charges at the multiple friction layers, along with a contact/separation delay achieved by distinct spacers between layers. This configuration allows the maximum triboelectric output charge of M-TENG to reach up to 7.52 nC, compared to 3.69 nC for a single-layered TENG. Furthermore, by integrating M-TENGs with an organic electrochemical transistor, the spike number multiplication property of M-TENGs is leveraged to demonstrate an artificial synaptic device with low energy consumption. As a proof-of-concept application, a robotic hand is operated through continuous memory training under repeated stimulations, successfully emulating long-term plasticity.

Keywords

References

  1. Sci Adv. 2017 Jul 28;3(7):e1700694 [PMID: 28782029]
  2. Nat Commun. 2022 Dec 23;13(1):7917 [PMID: 36564400]
  3. Nat Commun. 2016 Oct 05;7:12985 [PMID: 27703165]
  4. Nanoscale Res Lett. 2021 Feb 12;16(1):35 [PMID: 33580327]
  5. ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25479-86 [PMID: 26512729]
  6. ACS Nano. 2020 Jun 23;14(6):7101-7110 [PMID: 32501001]
  7. ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27373-81 [PMID: 26588726]
  8. Neuroscientist. 2003 Dec;9(6):463-74 [PMID: 14678579]
  9. Sci Adv. 2016 Mar 04;2(3):e1501478 [PMID: 26973876]
  10. ACS Appl Mater Interfaces. 2016 Oct 5;8(39):26169-26175 [PMID: 27608136]
  11. Adv Mater. 2020 Jan;32(2):e1905539 [PMID: 31709682]
  12. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):736-44 [PMID: 26654103]
  13. Nat Mater. 2011 Jun 26;10(8):591-5 [PMID: 21706012]
  14. Nat Commun. 2020 Aug 26;11(1):4277 [PMID: 32848138]
  15. Nat Commun. 2021 Mar 11;12(1):1581 [PMID: 33707420]
  16. J Neurosci. 1996 Sep 15;16(18):5661-71 [PMID: 8795622]
  17. Anal Bioanal Chem. 2012 Feb;402(5):1813-26 [PMID: 21910013]
  18. Sci Rep. 2019 May 17;9(1):7549 [PMID: 31101832]
  19. ACS Nano. 2018 Feb 27;12(2):1849-1858 [PMID: 29328629]
  20. ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20179-87 [PMID: 25341965]
  21. ACS Nano. 2018 Apr 24;12(4):3954-3963 [PMID: 29595963]
  22. Nat Commun. 2020 Oct 23;11(1):5381 [PMID: 33097696]
  23. ACS Appl Mater Interfaces. 2014 Oct 8;6(19):17184-9 [PMID: 25192417]
  24. Nat Commun. 2021 Apr 30;12(1):2480 [PMID: 33931638]
  25. Trends Neurosci. 2007 Dec;30(12):653-61 [PMID: 17981345]
  26. ACS Appl Mater Interfaces. 2020 May 20;12(20):23207-23216 [PMID: 32342684]
  27. Adv Sci (Weinh). 2023 Dec;10(36):e2304598 [PMID: 37888859]

Grants

  1. 2021R1A2C3009222/NRF
  2. 2022M3H4A1A02076825/NRF
  3. CAP22082-201/National Research Council of Science and Technology

Word Cloud

Created with Highcharts 10.0.0synapticdevicesM-TENGtriboelectriclowconsumptionmemoryTriboelectricnanogeneratorsTENGstransistorsspikesplasticityTENGfilm1HmultiplelayersnCM-TENGsartificialdomainswearableelectronicsroboticsInternetThingsdemandpowercapabilitymultiplexsensinglearningofferremarkableversatilityregardparticularlyintegratedmimicbiologicalsynapsesHoweverconventionalgeneratingtwopercyclelimitationsusedrequiringrepetitivehigh-frequencygatingsignalsperformvariousfunctionsHereinmulti-layeredmicropatternedconsistingpolydimethylsiloxanePDMScompositeincludes2H2H-perfluorooctyltrichlorosilane/BaTiO/PDMSproposedgeneratessingletouchutilizingseparatechargesfrictionalongcontact/separationdelayachieveddistinctspacersconfigurationallowsmaximumoutputchargereach752compared369single-layeredFurthermoreintegratingorganicelectrochemicaltransistorspikenumbermultiplicationpropertyleverageddemonstratedeviceenergyproof-of-conceptapplicationrobotichandoperatedcontinuoustrainingrepeatedstimulationssuccessfullyemulatinglong-termMulti-LayeredNanogeneratorsControllableMultipleSpikesLow-PowerArtificialSynapticDeviceshuman-machineinterface

Similar Articles

Cited By