Fetal heart rate spectral analysis in raw signals and PRSA-derived curve: normal and pathological fetuses discrimination.

Giulio Steyde, Edoardo Spairani, Giovanni Magenes, Maria G Signorini
Author Information
  1. Giulio Steyde: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy. giulio.steyde@polimi.it. ORCID
  2. Edoardo Spairani: Electrical, Computer and Biomedical Engineering Department, Università di Pavia, 27100, Pavia, Italy.
  3. Giovanni Magenes: Electrical, Computer and Biomedical Engineering Department, Università di Pavia, 27100, Pavia, Italy.
  4. Maria G Signorini: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

Abstract

Cardiotocography (CTG) is the most common technique for electronic fetal monitoring and consists of the simultaneous recording of fetal heart rate (FHR) and uterine contractions. In analogy with the adult case, spectral analysis of the FHR signal can be used to assess the functionality of the autonomic nervous system. To do so, several methods can be employed, each of which has its strengths and limitations. This paper aims at performing a methodological investigation on FHR spectral analysis adopting 4 different spectrum estimators and a novel PRSA-based spectral method. The performances have been evaluated in terms of the ability of the various methods to detect changes in the FHR in two common pregnancy complications: intrauterine growth restriction (IUGR) and gestational diabetes. A balanced dataset containing 2178 recordings distributed between the 32nd and 38th week of gestation was used. The results show that the spectral method derived from the PRSA better differentiates high-risk pregnancies vs. controls compared to the others. Specifically, it more robustly detects an increase in power percentage within the movement frequency band and a decrease in high frequency between pregnancies at high risk in comparison to those at low risk.

Keywords

References

  1. Physiol Meas. 2017 May;38(5):R61-R88 [PMID: 28186000]
  2. Front Artif Intell. 2021 Mar 08;4:622616 [PMID: 33889841]
  3. Ultrasound Obstet Gynecol. 2018 Sep;52(3):347-351 [PMID: 28782142]
  4. IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):226-238 [PMID: 31562079]
  5. Front Pediatr. 2022 Sep 05;10:1007799 [PMID: 36133792]
  6. Acta Obstet Gynecol Scand. 2017 Nov;96(11):1322-1329 [PMID: 28862738]
  7. IEEE Trans Biomed Eng. 2023 Apr;70(4):1196-1207 [PMID: 36201421]
  8. N Engl J Med. 2005 Oct 27;353(17):1848-50 [PMID: 16251542]
  9. Cochrane Database Syst Rev. 2015 Sep 12;(9):CD007863 [PMID: 26363287]
  10. J Exp Psychol Gen. 2012 Feb;141(1):2-18 [PMID: 21823805]
  11. Comput Math Methods Med. 2016;2016:9585431 [PMID: 27195018]
  12. IEEE J Biomed Health Inform. 2013 Sep;17(5):959-66 [PMID: 25055375]
  13. Acta Obstet Gynecol Scand. 2008;87(3):300-6 [PMID: 18307069]
  14. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1375-1378 [PMID: 36086045]
  15. IEEE Trans Biomed Eng. 2003 Mar;50(3):365-74 [PMID: 12669993]
  16. Dev Med Child Neurol. 2001 Jan;43(1):61-8 [PMID: 11201426]
  17. J Matern Fetal Neonatal Med. 2012 Dec;25(12):2517-22 [PMID: 22725720]
  18. IEEE Trans Biomed Eng. 2020 Apr;67(4):1176-1185 [PMID: 31395532]
  19. Front Physiol. 2022 Aug 19;13:959750 [PMID: 36060697]
  20. J Matern Fetal Neonatal Med. 2012 Dec;25(12):2523-8 [PMID: 22630786]
  21. J Appl Physiol (1985). 2007 Mar;102(3):1057-64 [PMID: 17095644]
  22. Ultrasound Obstet Gynecol. 2016 Sep;48(3):333-9 [PMID: 26909664]
  23. Chaos. 2007 Mar;17(1):015112 [PMID: 17411269]
  24. Sensors (Basel). 2021 Sep 13;21(18): [PMID: 34577342]
  25. Neurosci Biobehav Rev. 2009 Feb;33(2):71-80 [PMID: 18706440]
  26. Med Biol Eng Comput. 2009 Sep;47(9):911-9 [PMID: 19526262]
  27. Semin Pediatr Neurol. 2018 Dec;28:3-16 [PMID: 30522726]
  28. Lancet. 2006 May 20;367(9523):1674-81 [PMID: 16714188]
  29. Med Biol Eng Comput. 2016 Dec;54(12):1921-1933 [PMID: 27059998]
  30. Front Public Health. 2017 Sep 28;5:258 [PMID: 29034226]
  31. Obstet Gynecol. 2017 Jul;130(1):e17-e37 [PMID: 28644336]
  32. Med Biol Eng Comput. 2006 Mar;44(3):188-201 [PMID: 16937160]
  33. Early Hum Dev. 1982 Apr;6(2):177-95 [PMID: 7094856]
  34. Am J Obstet Gynecol. 2002 May;186(5):1095-103 [PMID: 12015543]

Grants

  1. MIUR PRIN Project Call 2017 "ICT4MOMs" 2017RR5EW3/Ministero dell'Istruzione, dell'Università e della Ricerca

MeSH Term

Pregnancy
Female
Adult
Humans
Heart Rate, Fetal
Cardiotocography
Fetal Growth Retardation
Fetus
Ultrasonography, Prenatal

Word Cloud

Created with Highcharts 10.0.0spectralFHRanalysisfetalCardiotocographycommonmonitoringheartratesignalcanusedmethodsmethodpregnanciesfrequencyhighriskCTGtechniqueelectronicconsistssimultaneousrecordinguterinecontractionsanalogyadultcaseassessfunctionalityautonomicnervoussystemseveralemployedstrengthslimitationspaperaimsperformingmethodologicalinvestigationadopting4differentspectrumestimatorsnovelPRSA-basedperformancesevaluatedtermsabilityvariousdetectchangestwopregnancycomplications:intrauterinegrowthrestrictionIUGRgestationaldiabetesbalanceddatasetcontaining2178recordingsdistributed32nd38thweekgestationresultsshowderivedPRSAbetterdifferentiateshigh-riskvscontrolscomparedothersSpecificallyrobustlydetectsincreasepowerpercentagewithinmovementbanddecreasecomparisonlowFetalrawsignalsPRSA-derivedcurve:normalpathologicalfetusesdiscriminationElectronicPhase-rectifiedaveragingSpectral

Similar Articles

Cited By