An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in .

Bo-Chou Chen, Yu-Zhen Chen, Huan-Yu Lin
Author Information
  1. Bo-Chou Chen: Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan.
  2. Yu-Zhen Chen: Department of Food Science and Technology, Hungkuang University, Taichung 433, Taiwan.
  3. Huan-Yu Lin: Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan. ORCID

Abstract

The CRISPR-Cas system has been widely used for genome editing due to its convenience, simplicity and flexibility. Using a plasmid-carrying Cas protein and crRNA or sgRNA expression cassettes is an efficient strategy in the CRISPR-Cas genome editing system. However, the plasmid remains in the cells after genome editing. Development of general plasmid-curing strategies is necessary. Based on our previous CRISPR-Cpf1 genome-editing system in , the crRNA, designed for the replication origin of the CRISPR-Cpf1 plasmid, and the ssDNA, as a template for homologous recombination, were introduced for plasmid curing. The efficiency of the plasmid curing was 96 ± 4%. In addition, we further simplified the plasmid curing system by transforming only one crRNA into , and the curing efficiency was about 70%. In summary, we have developed a CRISPR-mediated plasmid-curing system. The RNA-only plasmid curing system is fast and easy. This plasmid curing strategy can be applied in broad hosts by designing crRNA specific for the replication origin of the plasmid. The plasmid curing system via CRISPR-Cas editing technology can be applied to produce traceless products without foreign genes and to perform iterative processes in multiple rounds of genome editing.

Keywords

References

  1. Nature. 2017 Jun 22;546(7659):559-563 [PMID: 28562584]
  2. Biosci Biotechnol Biochem. 2017 Mar;81(3):453-459 [PMID: 27900888]
  3. Microbiol Mol Biol Rev. 1998 Jun;62(2):434-64 [PMID: 9618448]
  4. Microb Cell Fact. 2022 Jul 25;21(1):149 [PMID: 35879798]
  5. Microb Cell Fact. 2022 Aug 23;21(1):173 [PMID: 35999638]
  6. Nat Methods. 2017 Feb;14(2):153-159 [PMID: 27992409]
  7. Bioelectrochemistry. 2021 Oct;141:107871 [PMID: 34147013]
  8. Gene. 1981 Dec;16(1-3):227-35 [PMID: 6282694]
  9. Front Microbiol. 2019 May 21;10:1140 [PMID: 31164882]
  10. Cell. 2015 Oct 22;163(3):759-71 [PMID: 26422227]
  11. Gene. 1985;39(1):25-31 [PMID: 2934294]
  12. Front Microbiol. 2015 Mar 31;6:242 [PMID: 25873913]
  13. J Biotechnol. 2017 Jun 10;251:151-155 [PMID: 28433723]
  14. Nucleic Acids Res. 2017 Dec 1;45(21):12585-12598 [PMID: 29106617]
  15. Front Bioeng Biotechnol. 2023 Feb 16;11:1039315 [PMID: 36873365]
  16. Yeast. 1998 Apr 30;14(6):565-71 [PMID: 9605506]
  17. Nat Rev Microbiol. 2017 Mar;15(3):169-182 [PMID: 28111461]
  18. Biochem Biophys Res Commun. 1971 Feb 5;42(3):550-7 [PMID: 5542907]
  19. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32631827]
  20. Curr Drug Targets. 2006 Jul;7(7):823-41 [PMID: 16842214]
  21. Front Microbiol. 2021 Jun 10;12:536357 [PMID: 34177818]
  22. Adv Sci (Weinh). 2020 Feb 06;7(6):1902312 [PMID: 32195078]
  23. Metab Eng. 2015 Sep;31:13-21 [PMID: 26141150]
  24. Nature. 2016 Apr 28;532(7600):517-21 [PMID: 27096362]
  25. Int J Antimicrob Agents. 2019 Jan;53(1):1-8 [PMID: 30267758]
  26. Trends Microbiol. 1998 Sep;6(9):342-5; discussion 345-6 [PMID: 9778725]
  27. FEMS Yeast Res. 2014 Mar;14(2):238-48 [PMID: 24151867]
  28. Appl Environ Microbiol. 2015 Apr;81(7):2506-14 [PMID: 25636838]
  29. Yeast. 2017 Jun;34(6):267-275 [PMID: 28207166]
  30. FEMS Microbiol Rev. 2018 Nov 1;42(6):781-804 [PMID: 30085063]
  31. Microb Cell Fact. 2017 Aug 2;16(1):135 [PMID: 28764701]
  32. Infect Immun. 1998 Sep;66(9):4011-7 [PMID: 9712740]
  33. Curr Opin Microbiol. 2017 Aug;38:74-80 [PMID: 28538166]
  34. Nat Rev Microbiol. 2015 Nov;13(11):722-36 [PMID: 26411297]
  35. J Ind Microbiol Biotechnol. 2020 Jan;47(1):83-96 [PMID: 31768773]
  36. Infect Immun. 2011 Jul;79(7):2502-9 [PMID: 21555398]
  37. Nat Commun. 2017 Dec 8;8(1):2024 [PMID: 29222508]

MeSH Term

Gene Editing
Plasmids
RNA
RNA, Guide, CRISPR-Cas Systems
Saccharomyces cerevisiae

Chemicals

RNA
RNA, Guide, CRISPR-Cas Systems

Word Cloud

Created with Highcharts 10.0.0plasmidsystemcuringeditinggenomecrRNACRISPR-Cpf1CRISPR-Casplasmid-curingstrategygenome-editingreplicationoriginefficiencycanappliedviawidelyuseddueconveniencesimplicityflexibilityUsingplasmid-carryingCasproteinsgRNAexpressioncassettesefficientHoweverremainscellsDevelopmentgeneralstrategiesnecessaryBasedpreviousdesignedssDNAtemplatehomologousrecombinationintroduced96±4%additionsimplifiedtransformingone70%summarydevelopedCRISPR-mediatedRNA-onlyfasteasybroadhostsdesigningspecifictechnologyproducetracelessproductswithoutforeigngenesperformiterativeprocessesmultipleroundsIntroducedRNA-OnlyApproachPlasmidCuringSystemSaccharomycescerevisiae

Similar Articles

Cited By