Multi-Omics Elucidates Difference in Accumulation of Bioactive Constituents in Licorice () under Drought Stress.

Chengcheng Wang, Dawei Wu, Liying Jiang, Xunhong Liu, Tiantian Xie
Author Information
  1. Chengcheng Wang: School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China.
  2. Dawei Wu: School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China.
  3. Liying Jiang: School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China.
  4. Xunhong Liu: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  5. Tiantian Xie: School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China.

Abstract

Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (, , , , , , , and ) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.

Keywords

References

  1. Plant Cell. 2011 Nov;23(11):4112-23 [PMID: 22128119]
  2. Front Plant Sci. 2021 Oct 07;12:727882 [PMID: 34691107]
  3. BMC Plant Biol. 2016 Mar 21;16:67 [PMID: 27001212]
  4. J Proteome Res. 2019 May 3;18(5):1958-1969 [PMID: 30990047]
  5. Front Plant Sci. 2021 Jun 18;12:680368 [PMID: 34220900]
  6. Physiol Plant. 2014 Nov;152(3):431-40 [PMID: 24730512]
  7. Phytochemistry. 2014 Jul;103:32-37 [PMID: 24768283]
  8. New Phytol. 2016 Oct;212(1):123-35 [PMID: 27252088]
  9. Proteomics. 2016 Aug;16(15-16):2146-59 [PMID: 27145088]
  10. Am J Chin Med. 2020;48(1):17-45 [PMID: 31931596]
  11. BMC Plant Biol. 2021 Mar 22;21(1):148 [PMID: 33752615]
  12. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14204-9 [PMID: 18779566]
  13. Plant Signal Behav. 2014;9(8):e29518 [PMID: 25763629]
  14. J Agric Food Chem. 2019 Oct 9;67(40):11262-11276 [PMID: 31509416]
  15. Biology (Basel). 2022 Jul 27;11(8): [PMID: 36009753]
  16. Pharmacol Ther. 2020 Oct;214:107618 [PMID: 32592716]
  17. J Agric Food Chem. 2019 Jan 9;67(1):148-158 [PMID: 30563335]
  18. J Agric Food Chem. 2020 Feb 5;68(5):1480-1493 [PMID: 31899641]
  19. Yao Xue Xue Bao. 2012 Aug;47(8):1023-30 [PMID: 23162899]
  20. Front Plant Sci. 2023 Jan 31;13:1031466 [PMID: 36798806]
  21. Phytochemistry. 2018 Dec;156:124-134 [PMID: 30278303]
  22. Plant Cell Rep. 2019 Sep;38(9):1181-1197 [PMID: 31165250]
  23. Plant J. 2019 Sep;99(6):1127-1143 [PMID: 31095780]
  24. Chem Pharm Bull (Tokyo). 2019;67(10):1104-1115 [PMID: 31582630]
  25. Front Plant Sci. 2023 Oct 09;14:1265971 [PMID: 37877087]
  26. Biol Pharm Bull. 2015;38(1):75-81 [PMID: 25744461]
  27. Nat Commun. 2020 Nov 16;11(1):5664 [PMID: 33199711]
  28. Molecules. 2020 Dec 13;25(24): [PMID: 33322162]
  29. J Exp Bot. 2020 May 30;71(10):3126-3141 [PMID: 31985780]
  30. J Integr Plant Biol. 2014 Sep;56(9):876-86 [PMID: 24730595]
  31. J Plant Res. 2017 May;130(3):611-624 [PMID: 28290079]
  32. Phytochemistry. 2019 Jun;162:90-98 [PMID: 30875522]
  33. Plant Physiol Biochem. 2014 Jul;80:60-6 [PMID: 24727789]
  34. Molecules. 2019 Oct 11;24(20): [PMID: 31614687]
  35. J Agric Food Chem. 2019 Jan 16;67(2):563-577 [PMID: 30562017]
  36. Free Radic Biol Med. 2023 Apr;199:56-66 [PMID: 36775107]
  37. J Proteomics. 2020 Jan 6;210:103438 [PMID: 31271902]
  38. Ecotoxicology. 2022 May;31(4):637-648 [PMID: 35296952]
  39. Plant Physiol Biochem. 2013 Nov;72:21-34 [PMID: 23473981]
  40. Int J Mol Sci. 2022 Oct 09;23(19): [PMID: 36233278]
  41. Biotechnol Adv. 2020 Jan - Feb;38:107316 [PMID: 30458225]
  42. J Ethnopharmacol. 2013 Dec 12;150(3):781-90 [PMID: 24201019]
  43. Plant Physiol Biochem. 2013 Nov;72:35-45 [PMID: 23583204]
  44. Molecules. 2022 Aug 25;27(17): [PMID: 36080237]
  45. Cells. 2021 Sep 25;10(10): [PMID: 34685517]
  46. Int J Mol Sci. 2021 Nov 26;22(23): [PMID: 34884627]
  47. Nat Rev Mol Cell Biol. 2022 Oct;23(10):663-679 [PMID: 35760900]
  48. J Agric Food Chem. 2023 Apr 5;71(13):5391-5402 [PMID: 36971245]
  49. Plant J. 2017 Jan;89(2):181-194 [PMID: 27775193]
  50. J Nat Prod. 2014 Jul 25;77(7):1632-43 [PMID: 24957203]

Grants

  1. Z2021013/Jiangsu Health Commission

MeSH Term

Glycyrrhiza uralensis
Glycyrrhiza
Droughts
Multiomics
Proteome
Plant Breeding
Flavonoids
Glycyrrhizic Acid
Gene Expression Regulation, Plant
Transcriptome

Chemicals

Proteome
Flavonoids
Glycyrrhizic Acid

Word Cloud

Created with Highcharts 10.0.0biosynthesisdroughtflavonoidsflavonoidlevelsexpressionLicoricebasedtriterpeneslicoriceconditionsstudytranscriptomeproteomedatageneproteingenesproteinsshowedupregulatedstressbioactiveconstituentsfrequentlyappliedherbpotentialediblemedicinalvaluevariousHoweverstudiesdetailedtriterpenemetabolismmolecularbasislimitedespeciallypresentcarriedmetabolomeexperimentsultimatelycombinethreeomicsanalysisperformedbioinformaticscomparisonintegratingCloudplatformalongsimplifiedprimarytriterpenoidsKEGGpathwaymetabolomicresultspathwaysenrichedKeyflavonoid-relatedrepresentativeHIDHCYP81E1_7CYP93CVRobtainedhightreatmentNotablyoneR2R3-MYBtranscriptionfactorGlyur000237s000143821criticalregulatorachievedsignificantwellglycyrrhizinbASCYP88D6founddifferentiallyexpressedDEGsDEPssimilarpatternspositivelyrelatedmetabolicprofilessaponinbelievesuitablemaycontributeaccumulationresearchprovidesinsightgeneticqualitybreedingplantMulti-OmicsElucidatesDifferenceAccumulationBioactiveConstituentsDroughtStressGlycyrrhizauralensismulti-omics

Similar Articles

Cited By (2)