Slc11 Synapomorphy: A Conserved 3D Framework Articulating Carrier Conformation Switch.

Mathieu F M Cellier
Author Information
  1. Mathieu F M Cellier: Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada.

Abstract

Transmembrane carriers of the Slc11 family catalyze proton (H)-dependent uptake of divalent metal ions (Me) such as manganese and iron-vital elements coveted during infection. The Slc11 mechanism of high-affinity Me cell import is selective and conserved between prokaryotic (MntH) and eukaryotic (Nramp) homologs, though processes coupling the use of the proton motive force to Me uptake evolved repeatedly. Adding bacterial piracy of genes spread in distinct environmental niches suggests selective gain of function that may benefit opportunistic pathogens. To better understand Slc11 evolution, Alphafold (AF2)/Colabfold (CF) 3D predictions for bacterial sequences from sister clades of eukaryotic descent (MCb and MCg) were compared using both native and mutant templates. AF2/CF model an array of native MCb intermediates spanning the transition from outwardly open (OO) to inwardly open (IO) carriers. In silico mutagenesis targeting (i) a set of (evolutionarily coupled) sites that may define Slc11 function (putative synapomorphy) and (ii) residues from networked communities evolving during MCb transition indicates that Slc11 synapomorphy primarily instructs a Me-selective conformation switch which unlocks carrier inner gate and contributes to Me binding site occlusion and outer gate locking. Inner gate opening apparently proceeds from interaction between transmembrane helix (h) h5, h8 and h1a. MCg1 xenologs revealed marked differences in carrier shape and plasticity, owing partly to an altered intramolecular H network. Yet, targeting Slc11 synapomorphy also converted MCg1 IO models to an OO state, apparently mobilizing the same residues to control gates. But MCg1 response to mutagenesis differed, with extensive divergence within this clade correlating with MCb-like modeling properties. Notably, MCg1 divergent epistasis marks the emergence of the genus -. Slc11 synapomorphy localizes to the 3D areas that deviate least among MCb and MCg1 models (either IO or OO) implying that it constitutes a 3D network of residues articulating a Me-selective carrier conformation switch which is maintained in fast-evolving clades at the cost of divergent epistatic interactions impacting carrier shape and dynamics.

Keywords

References

  1. Appl Microbiol Biotechnol. 2013 Jul;97(14):6413-25 [PMID: 23749121]
  2. Infect Immun. 2013 Sep;81(9):3395-405 [PMID: 23817615]
  3. J Mol Biol. 2018 Jul 20;430(15):2237-2243 [PMID: 29258817]
  4. Clin Microbiol Rev. 2020 Apr 15;33(3): [PMID: 32295766]
  5. J Cyst Fibros. 2022 Mar;21(2):344-347 [PMID: 34389256]
  6. J Mol Biol. 2021 Aug 6;433(16):166991 [PMID: 33865868]
  7. Biometals. 2015 Jun;28(3):509-19 [PMID: 25836716]
  8. Front Cell Dev Biol. 2022 Jun 21;10:921920 [PMID: 35800897]
  9. Science. 2022 May 20;376(6595):823-830 [PMID: 35587978]
  10. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  11. Trends Microbiol. 2021 May;29(5):441-457 [PMID: 32951986]
  12. BMC Bioinformatics. 2007 Feb 24;8:63 [PMID: 17319966]
  13. Biophys Rev (Melville). 2022 Mar;3(1):011307 [PMID: 35434715]
  14. Nature. 2005 Sep 8;437(7056):215-23 [PMID: 16041361]
  15. Elife. 2022 Nov 10;11: [PMID: 36355038]
  16. Evolution. 2022 Aug;76(8):1706-1719 [PMID: 35765784]
  17. Elife. 2023 Apr 11;12: [PMID: 37039477]
  18. Nucleic Acids Res. 1998 Sep 1;26(17):3986-90 [PMID: 9705509]
  19. Int J Syst Evol Microbiol. 2020 Jan;70(1):530-536 [PMID: 31613739]
  20. Nucleic Acids Res. 2019 Jul 2;47(W1):W477-W481 [PMID: 31114904]
  21. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  22. Comput Struct Biotechnol J. 2022 Jan 07;20:640-649 [PMID: 35140884]
  23. BMC Genomics. 2018 Aug 17;19(1):620 [PMID: 30119641]
  24. Int J Syst Evol Microbiol. 2009 Oct;59(Pt 10):2510-26 [PMID: 19622649]
  25. Elife. 2022 Jan 10;11: [PMID: 35001872]
  26. Mol Microbiol. 2016 May;100(4):589-606 [PMID: 27150893]
  27. Elife. 2019 Feb 04;8: [PMID: 30714568]
  28. Curr Opin Struct Biol. 2023 Feb;78:102517 [PMID: 36587424]
  29. mSphere. 2020 Jan 8;5(1): [PMID: 31915219]
  30. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W35-40 [PMID: 20525785]
  31. Curr Microbiol. 2021 Jan;78(1):411-416 [PMID: 33033853]
  32. Curr Top Membr. 2012;69:249-93 [PMID: 23046654]
  33. Philos Trans R Soc Lond B Biol Sci. 2023 May 22;378(1877):20220058 [PMID: 37004727]
  34. BMC Biol. 2021 Aug 30;19(1):179 [PMID: 34461897]
  35. Curr Top Membr. 2012;70:169-214 [PMID: 23177986]
  36. Protein Sci. 2023 Jan;32(1):e4519 [PMID: 36419248]
  37. Nat Commun. 2017 Jan 06;8:14033 [PMID: 28059071]
  38. Curr Opin Struct Biol. 2018 Jun;50:18-25 [PMID: 29100081]
  39. Mol Biol Evol. 2013 Jan;30(1):79-87 [PMID: 22396525]
  40. Philos Trans R Soc Lond B Biol Sci. 2008 Dec 27;363(1512):3965-76 [PMID: 18852096]
  41. Curr Opin Infect Dis. 2022 Dec 1;35(6):517-523 [PMID: 35942848]
  42. Front Cell Dev Biol. 2022 Oct 13;10:988866 [PMID: 36313567]
  43. Nucleic Acids Res. 2016 Jul 8;44(W1):W232-5 [PMID: 27084950]
  44. Front Chem. 2022 Sep 20;10:1004815 [PMID: 36204150]
  45. J Mol Biol. 2022 Oct 15;434(19):167746 [PMID: 35843285]
  46. Appl Environ Microbiol. 2020 Mar 18;86(7): [PMID: 32005739]
  47. Curr Opin Struct Biol. 2021 Aug;69:160-168 [PMID: 34077895]
  48. PLoS Pathog. 2018 Sep 20;14(9):e1007102 [PMID: 30235334]
  49. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W240-5 [PMID: 24838569]
  50. ACS Omega. 2022 Jan 20;7(4):3768-3774 [PMID: 35128285]
  51. Mol Biol Evol. 2013 Jul;30(7):1713-9 [PMID: 23589455]
  52. Trends Biochem Sci. 2023 Sep;48(9):751-760 [PMID: 37330341]
  53. Front Cell Infect Microbiol. 2023 Feb 03;13:943390 [PMID: 36816586]
  54. Nat Rev Mol Cell Biol. 2002 Nov;3(11):876-81 [PMID: 12415305]
  55. Nat Struct Mol Biol. 2014 Nov;21(11):990-6 [PMID: 25326704]
  56. Biophys J. 2021 Oct 19;120(20):4320-4324 [PMID: 34480927]
  57. Nat Commun. 2022 Jul 1;13(1):3807 [PMID: 35778384]
  58. Microbes Infect. 2007 Nov-Dec;9(14-15):1662-70 [PMID: 18024118]
  59. J Med Microbiol. 2022 May;71(5): [PMID: 35587447]
  60. Nature. 2017 Sep 21;549(7672):409-413 [PMID: 28902834]
  61. Microb Genom. 2021 Jul;7(7): [PMID: 34232117]
  62. Physiology (Bethesda). 2009 Dec;24:377-86 [PMID: 19996368]
  63. Wellcome Open Res. 2018 Sep 24;3:124 [PMID: 30345391]
  64. Front Mol Biosci. 2022 Jul 15;9:945724 [PMID: 35911964]

Grants

  1. /Wellcome Trust

MeSH Term

Furylfuramide
Iron
Manganese
Biological Transport
Bacteria
Protons

Chemicals

Furylfuramide
Iron
Manganese
Protons

Word Cloud

Created with Highcharts 10.0.0Slc11synapomorphycarrierMCg13DMCbMntHOOIOmutagenesisresiduesconformationswitchgatecarriersprotonHuptakeselectiveeukaryoticNrampbacterialfunctionmaycladesnativetransitionopensilicotargetingMe-selectiveapparentlyshapenetworkmodelsmodelingdivergentepistasisTransmembranefamilycatalyze-dependentdivalentmetalionsmanganeseiron-vitalelementscovetedinfectionmechanismhigh-affinitycellimportconservedprokaryotichomologsthoughprocessescouplingusemotiveforceevolvedrepeatedlyAddingpiracygenesspreaddistinctenvironmentalnichessuggestsgainbenefitopportunisticpathogensbetterunderstandevolutionAlphafoldAF2/ColabfoldCFpredictionssequencessisterdescentMCgcomparedusingmutanttemplatesAF2/CFmodelarrayintermediatesspanningoutwardlyinwardlysetevolutionarilycoupledsitesdefineputativeiinetworkedcommunitiesevolvingindicatesprimarilyinstructsunlocksinnercontributesbindingsiteocclusionouterlockingInneropeningproceedsinteractiontransmembranehelixhh5h8h1axenologsrevealedmarkeddifferencesplasticityowingpartlyalteredintramolecularYetalsoconvertedstatemobilizingcontrolgatesresponsedifferedextensivedivergencewithincladecorrelatingMCb-likepropertiesNotablymarksemergencegenus-localizesareasdeviateleastamongeitherimplyingconstitutesarticulatingmaintainedfast-evolvingcostepistaticinteractionsimpactingdynamicsSynapomorphy:ConservedFrameworkArticulatingCarrierConformationSwitchAF2-CFLeuTfoldCMCnaturalresistance-associatedmacrophageproteinphylogeneticanalysisproton-dependentMn2+transporter

Similar Articles

Cited By