The Use of Viral Vectors for Gene Therapy and Vaccination in Tuberculosis.

Dulce Mata-Espinosa, Jacqueline V Lara-Espinosa, Jorge Barrios-Payán, Rogelio Hernández-Pando
Author Information
  1. Dulce Mata-Espinosa: Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico.
  2. Jacqueline V Lara-Espinosa: Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico. ORCID
  3. Jorge Barrios-Payán: Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico. ORCID
  4. Rogelio Hernández-Pando: Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico. ORCID

Abstract

Tuberculosis (TB), an infection caused by , is one of the primary causes of death globally. The treatment of TB is long and based on several drugs, producing problems in compliance and toxicity, increasing resistance to first-line antibiotics that result in multidrug-resistant TB and extensively drug-resistant TB. Thus, the need for new anti-TB treatments has increased. Here, we review some model strategies to study gene therapy based on the administration of a recombinant adenovirus that encodes diverse cytokines, such as IFNγ, IL12, GM/CSF, OPN, TNFα, and antimicrobial peptides to enhance the protective immune response against . These models include a model of progressive pulmonary TB, a model of chronic infection similar to latent TB, and a murine model of pulmonary transmission to close contacts. We also review new vaccines that deliver antigens via particle- or virus-based vectors and trigger protective immune responses. The results obtained in this type of research suggest that this is an alternative therapy that has the potential to treat active TB as an adjuvant to conventional antibiotics and a promising preventive treatment for latent TB reactivation and transmission. Moreover, Ad vector vaccines are adequate for preventing infectious diseases, including TB.

Keywords

References

  1. Front Cell Infect Microbiol. 2018 Apr 10;8:114 [PMID: 29755957]
  2. Immunology. 2004 Aug;112(4):661-8 [PMID: 15270738]
  3. J Infect Dis. 2006 Sep 1;194(5):697-701 [PMID: 16897670]
  4. N Engl J Med. 2001 Oct 11;345(15):1098-104 [PMID: 11596589]
  5. Sci Transl Med. 2013 Oct 2;5(205):205ra134 [PMID: 24089406]
  6. Tuberculosis (Edinb). 2016 Sep;100:5-14 [PMID: 27553405]
  7. Int J Mol Sci. 2023 Apr 18;24(8): [PMID: 37108602]
  8. FEBS Lett. 2019 Dec;593(24):3660-3673 [PMID: 31747467]
  9. J Clin Invest. 1999 Feb;103(4):579-87 [PMID: 10021467]
  10. Expert Rev Respir Med. 2018 May;12(5):427-440 [PMID: 29575946]
  11. Tuberculosis (Edinb). 2022 May;134:102198 [PMID: 35344918]
  12. Int Rev Cell Mol Biol. 2016;322:331-62 [PMID: 26940522]
  13. Lancet Infect Dis. 2014 Oct;14(10):939-46 [PMID: 25151225]
  14. Curr Med Chem. 2014;21(20):2299-321 [PMID: 24533812]
  15. Annu Rev Immunol. 2013;31:475-527 [PMID: 23516984]
  16. Radiographics. 2019 Nov-Dec;39(7):2023-2037 [PMID: 31697616]
  17. Vaccine. 2009 Mar 26;27(15):2121-7 [PMID: 19356615]
  18. Mol Ther Nucleic Acids. 2020 Dec 4;22:1121-1128 [PMID: 33110704]
  19. Mol Ther. 2008 Jun;16(6):1065-1072 [PMID: 28178470]
  20. Euro Surveill. 2013 Oct 03;18(40): [PMID: 24128699]
  21. Vaccine. 2020 Jan 22;38(4):779-789 [PMID: 31735500]
  22. World J Microbiol Biotechnol. 2023 May 24;39(8):206 [PMID: 37221438]
  23. Expert Opin Biol Ther. 2015 Mar;15(3):337-51 [PMID: 25529044]
  24. PLoS One. 2013 May 17;8(5):e63331 [PMID: 23691024]
  25. Vet Pathol. 2012 May;49(3):423-39 [PMID: 22262351]
  26. Pathog Dis. 2016 Oct;74(7): [PMID: 27604468]
  27. Front Immunol. 2022 Jun 23;13:895020 [PMID: 35812383]
  28. Sci Rep. 2016 Feb 24;6:21522 [PMID: 26908312]
  29. Front Pediatr. 2019 Aug 27;7:350 [PMID: 31508399]
  30. J Immunol. 2005 Jun 15;174(12):7986-94 [PMID: 15944305]
  31. Nat Med. 2018 Feb;24(2):130-143 [PMID: 29334373]
  32. Mol Ther. 2008 Jun;16(6):1161-9 [PMID: 18388911]
  33. Infect Immun. 2005 Sep;73(9):5782-8 [PMID: 16113296]
  34. Cancer Immunol Immunother. 2022 Sep;71(9):2057-2065 [PMID: 35024897]
  35. J Leukoc Biol. 2021 Nov;110(5):951-963 [PMID: 33682193]
  36. Lancet Infect Dis. 2020 Mar;20(3):e28-e37 [PMID: 32014117]
  37. Immunology. 1997 Apr;90(4):607-17 [PMID: 9176116]
  38. Vaccine. 2014 Oct 14;32(45):5908-17 [PMID: 25218194]
  39. Dtsch Arztebl Int. 2019 Oct 25;116(43):729-735 [PMID: 31755407]
  40. Clin Exp Immunol. 2010 Sep;161(3):542-50 [PMID: 20636399]
  41. Viruses. 2022 Apr 01;14(4): [PMID: 35458478]
  42. Int J Mol Sci. 2022 Feb 28;23(5): [PMID: 35269842]
  43. Clin Exp Immunol. 2013 Mar;171(3):283-97 [PMID: 23379435]
  44. Viruses. 2021 Feb 28;13(3): [PMID: 33671079]
  45. Clin Vaccine Immunol. 2012 Sep;19(9):1339-47 [PMID: 22761299]
  46. Immunology. 2009 Sep;128(1):123-33 [PMID: 19191912]
  47. Annu Rev Pathol. 2017 Jan 24;12:187-215 [PMID: 27959627]
  48. Vaccines (Basel). 2023 May 22;11(5): [PMID: 37243117]
  49. Int J Mol Sci. 2023 Jan 16;24(2): [PMID: 36675296]
  50. Arch Immunol Ther Exp (Warsz). 2009 Sep-Oct;57(5):355-67 [PMID: 19707720]
  51. Arch Virol. 2019 Mar;164(3):775-786 [PMID: 30666458]
  52. Clin Exp Immunol. 2002 May;128(2):229-37 [PMID: 11985512]
  53. J Exp Med. 1993 Dec 1;178(6):2249-54 [PMID: 7504064]
  54. Front Immunol. 2019 Jan 31;10:89 [PMID: 30766535]
  55. Immunology. 1996 Sep;89(1):26-33 [PMID: 8911136]
  56. Scand J Immunol. 2008 May;67(5):448-52 [PMID: 18363594]
  57. J Aerosol Med Pulm Drug Deliv. 2016 Oct;29(5):393-405 [PMID: 26745146]
  58. Mol Ther. 2020 Mar 4;28(3):709-722 [PMID: 31968213]
  59. Mol Ther. 2008 Jan;16(1):16-29 [PMID: 17912234]
  60. Virulence. 2023 Dec;14(1):2150449 [PMID: 36419223]
  61. Sci Rep. 2023 Jul 15;13(1):11443 [PMID: 37454188]
  62. PLoS One. 2009 Jun 10;4(6):e5856 [PMID: 19516906]
  63. Brain Behav Immun. 2007 Feb;21(2):169-70 [PMID: 16989979]
  64. Antimicrob Agents Chemother. 2019 Sep 16;63(12): [PMID: 31527037]
  65. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2509-14 [PMID: 9482916]
  66. Immunotherapy. 2013 Oct;5(10):1117-26 [PMID: 24088080]
  67. Front Immunol. 2021 Jun 11;12:673532 [PMID: 34177914]
  68. Cytokine Growth Factor Rev. 2008 Oct-Dec;19(5-6):333-45 [PMID: 18952487]
  69. Hum Gene Ther. 2022 Oct;33(19-20):1037-1051 [PMID: 35615876]
  70. Gut. 2001 May;48(5):733-6 [PMID: 11302979]
  71. Expert Rev Respir Med. 2021 Jul;15(7):931-948 [PMID: 33966561]
  72. Scand J Immunol. 2019 Mar;89(3):e12743 [PMID: 30548932]
  73. Int J Exp Pathol. 2000 Jun;81(3):199-209 [PMID: 10971741]
  74. Gene. 2013 Aug 10;525(2):162-9 [PMID: 23618815]
  75. Vaccine. 2015 Nov 27;33(48):6800-8 [PMID: 26478198]

Word Cloud

Created with Highcharts 10.0.0TBmodeltherapyvaccinesTuberculosisinfectiontreatmentbasedantibioticsnewreviewgeneadenovirusprotectiveimmunepulmonarylatenttransmissioncausedoneprimarycausesdeathgloballylongseveraldrugsproducingproblemscompliancetoxicityincreasingresistancefirst-lineresultmultidrug-resistantextensivelydrug-resistantThusneedanti-TBtreatmentsincreasedstrategiesstudyadministrationrecombinantencodesdiversecytokinesIFNγIL12GM/CSFOPNTNFαantimicrobialpeptidesenhanceresponsemodelsincludeprogressivechronicsimilarmurineclosecontactsalsodeliverantigensviaparticle-virus-basedvectorstriggerresponsesresultsobtainedtyperesearchsuggestalternativepotentialtreatactiveadjuvantconventionalpromisingpreventivereactivationMoreoverAdvectoradequatepreventinginfectiousdiseasesincludingUseViralVectorsGeneTherapyVaccinationtuberculosis

Similar Articles

Cited By (2)