IV BCG Vaccination and Aerosol BCG Revaccination Induce Mycobacteria-Responsive ���� T Cells Associated with Protective Efficacy against Challenge.

Alexandra L Morrison, Charlotte Sarfas, Laura Sibley, Jessica Williams, Adam Mabbutt, Mike J Dennis, Steve Lawrence, Andrew D White, Mark Bodman-Smith, Sally A Sharpe
Author Information
  1. Alexandra L Morrison: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK. ORCID
  2. Charlotte Sarfas: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.
  3. Laura Sibley: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.
  4. Jessica Williams: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK. ORCID
  5. Adam Mabbutt: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.
  6. Mike J Dennis: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.
  7. Steve Lawrence: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.
  8. Andrew D White: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK. ORCID
  9. Mark Bodman-Smith: Infection and Immunity Research Institute, St. George's University of London, London SW17 0BD, UK.
  10. Sally A Sharpe: Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.

Abstract

Intravenously (IV) delivered BCG provides superior tuberculosis (TB) protection compared with the intradermal (ID) route in non-human primates (NHPs). We examined how ���� T cell responses changed in vivo after IV BCG vaccination of NHPs, and whether these correlated with protection against aerosol challenge. In the circulation, V��2 T cell populations expanded after IV BCG vaccination, from a median of 1.5% (range: 0.8-2.3) of the CD3+ population at baseline, to 5.3% (range: 1.4-29.5) 4 weeks after , and were associated with TB protection. This protection was related to effector and central memory profiles; homing markers; and production of IFN-��, TNF-�� and granulysin. In comparison, V��2 cells did not expand after ID BCG, but underwent phenotypic and functional changes. When V��2 responses in bronchoalveolar lavage (BAL) samples were compared between routes, IV BCG vaccination resulted in highly functional mucosal V��2 cells, whereas ID BCG did not. We sought to explore whether an aerosol BCG boost following ID BCG vaccination could induce a ���� profile comparable to that induced with IV BCG. We found evidence that the aerosol BCG boost induced significant changes in the V��2 phenotype and function in cells isolated from the BAL. These results indicate that V��2 population frequency, activation and function are characteristic features of responses induced with IV BCG, and the translation of responses from the circulation to the site of infection could be a limiting factor in the response induced following ID BCG. An aerosol boost was able to localise activated V��2 populations at the mucosal surfaces of the lung. This vaccine strategy warrants further investigation to boost the waning human ID BCG response.

Keywords

References

  1. J Appl Microbiol. 2011 Aug;111(2):350-9 [PMID: 21651681]
  2. Cell Mol Immunol. 2013 Jan;10(1):58-64 [PMID: 23147720]
  3. PLoS One. 2015 Oct 28;10(10):e0141577 [PMID: 26509812]
  4. J Immunol. 2003 Aug 1;171(3):1602-9 [PMID: 12874255]
  5. Lancet Glob Health. 2022 Sep;10(9):e1307-e1316 [PMID: 35961354]
  6. Science. 2002 Mar 22;295(5563):2255-8 [PMID: 11910108]
  7. Nat Med. 2007 Jul;13(7):843-50 [PMID: 17558415]
  8. Vaccine. 2011 Jul 12;29(31):4875-7 [PMID: 21616115]
  9. Am Rev Respir Dis. 1973 Mar;107(3):351-8 [PMID: 4632221]
  10. Immunol Rev. 2021 May;301(1):10-29 [PMID: 33751597]
  11. Mucosal Immunol. 2022 Mar;15(3):379-388 [PMID: 34671115]
  12. Eur J Immunol. 2000 May;30(5):1512-9 [PMID: 10820400]
  13. PLoS One. 2013 Oct 03;8(10):e77334 [PMID: 24098583]
  14. Semin Immunopathol. 2015 May;37(3):239-49 [PMID: 25917388]
  15. Curr Opin Immunol. 2018 Oct;54:42-49 [PMID: 29902670]
  16. Hum Vaccin Immunother. 2021 Aug 3;17(8):2454-2470 [PMID: 33769193]
  17. Clin Vaccine Immunol. 2015 Sep;22(9):992-1003 [PMID: 26108288]
  18. Lancet Infect Dis. 2021 Nov;21(11):1590-1597 [PMID: 34237262]
  19. Front Immunol. 2022 Feb 09;12:801799 [PMID: 35222355]
  20. BMJ. 2010 Mar 15;340:c671 [PMID: 20231251]
  21. Nat Rev Microbiol. 2022 Dec;20(12):750-766 [PMID: 35879556]
  22. Oncoimmunology. 2015 Apr 1;4(8):e1021538 [PMID: 26405575]
  23. Tuberculosis (Edinb). 2017 May;104:46-57 [PMID: 28454649]
  24. J Clin Invest. 2005 Dec;115(12):3473-83 [PMID: 16308575]
  25. J Immunol. 2010 Apr 15;184(8):4414-22 [PMID: 20212094]
  26. Sci Rep. 2024 Jul 23;14(1):16993 [PMID: 39043848]
  27. Front Pediatr. 2019 Aug 27;7:350 [PMID: 31508399]
  28. Front Immunol. 2018 Nov 27;9:2636 [PMID: 30538697]
  29. Hum Vaccin Immunother. 2021 Dec 2;17(12):5284-5295 [PMID: 34856853]
  30. J Infect. 2006 Nov;53(5):350-6 [PMID: 16442629]
  31. J Infect Dis. 1992 Mar;165(3):506-12 [PMID: 1538155]
  32. EBioMedicine. 2022 Feb;76:103839 [PMID: 35149285]
  33. Tuberculosis (Edinb). 2016 Dec;101:174-190 [PMID: 27865390]
  34. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  35. J Infect Dis. 2014 Dec 15;210(12):1928-37 [PMID: 24943726]
  36. Paediatr Respir Rev. 2020 Nov;36:57-64 [PMID: 32958428]
  37. Front Immunol. 2021 Sep 08;12:743924 [PMID: 34567010]
  38. Pediatr Allergy Immunol. 2005 Dec;16(8):624-9 [PMID: 16343082]
  39. Cell Death Dis. 2021 Feb 15;12(2):184 [PMID: 33589608]
  40. Pathog Dis. 2016 Jun;74(4):ftw016 [PMID: 26960944]
  41. Int Immunol. 2007 May;19(5):657-73 [PMID: 17446209]
  42. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  43. Pharmaceutics. 2020 Apr 25;12(5): [PMID: 32344890]
  44. Nat Commun. 2021 Feb 24;12(1):1260 [PMID: 33627662]
  45. Lancet. 1996 Jul 6;348(9019):17-24 [PMID: 8691924]
  46. N Engl J Med. 2018 Jul 12;379(2):138-149 [PMID: 29996082]
  47. Front Immunol. 2021 Mar 29;12:666983 [PMID: 33854516]
  48. Tuberculosis (Edinb). 2023 Mar;139:102307 [PMID: 36706503]
  49. Immunology. 2020 Nov;161(3):245-258 [PMID: 32794189]
  50. Infect Immun. 2004 Jan;72(1):238-46 [PMID: 14688101]
  51. J Exp Med. 2003 Aug 4;198(3):391-7 [PMID: 12900516]
  52. Curr Opin Immunol. 2005 Jun;17(3):326-32 [PMID: 15886125]
  53. Vaccine. 2007 Aug 21;25(34):6313-20 [PMID: 17643559]
  54. Int J Immunopharmacol. 1994 May-Jun;16(5-6):435-44 [PMID: 7927990]
  55. PLoS Pathog. 2021 Dec 9;17(12):e1010061 [PMID: 34882748]
  56. J Immunol. 2007 Mar 15;178(6):3786-96 [PMID: 17339477]
  57. Clin Vaccine Immunol. 2010 Aug;17(8):1170-82 [PMID: 20534795]
  58. Curr Drug Deliv. 2008 Apr;5(2):114-9 [PMID: 18393813]
  59. J Hyg (Lond). 1953 Sep;51(3):372-85 [PMID: 13096745]
  60. Front Immunol. 2019 Nov 01;10:2479 [PMID: 31736945]
  61. J Immunol. 2002 Feb 1;168(3):1484-9 [PMID: 11801693]
  62. Lancet Respir Med. 2019 Sep;7(9):810-819 [PMID: 31416767]
  63. PLoS Pathog. 2009 Apr;5(4):e1000392 [PMID: 19381260]
  64. J Transl Med. 2018 Jan 10;16(1):3 [PMID: 29316940]
  65. Cytokine Growth Factor Rev. 2010 Dec;21(6):455-62 [PMID: 21075039]
  66. Tuberculosis (Edinb). 2009 Nov;89(6):405-16 [PMID: 19879805]
  67. Eur J Immunol. 2010 Aug;40(8):2211-20 [PMID: 20540114]

Grants

  1. PhD funding/Institute For Cancer Vaccine & Immunotherapy
  2. PhD funding/UK Health Security Agency

Word Cloud

Created with Highcharts 10.0.0BCGIVV��2IDprotection����TresponsesvaccinationaerosolcellsboostinducedtuberculosisTBcomparedNHPscellwhethercirculationpopulations1range:population5functionalchangesBALmucosalfollowingfunctionresponseIntravenouslydeliveredprovidessuperiorintradermalroutenon-humanprimatesexaminedchangedvivocorrelatedchallengeexpandedmedian5%08-23CD3+baseline3%4-294weeksassociatedrelatedeffectorcentralmemoryprofileshomingmarkersproductionIFN-��TNF-��granulysincomparisonexpandunderwentphenotypicbronchoalveolarlavagesamplesroutesresultedhighlywhereassoughtexploreinduceprofilecomparablefoundevidencesignificantphenotypeisolatedresultsindicatefrequencyactivationcharacteristicfeaturestranslationsiteinfectionlimitingfactorablelocaliseactivatedsurfaceslungvaccinestrategywarrantsinvestigationwaninghumanVaccinationAerosolRevaccinationInduceMycobacteria-ResponsiveCellsAssociatedProtectiveEfficacyChallenge

Similar Articles

Cited By