Substances in the mandibular glands mediate queen effects on larval development and colony organization in an annual bumble bee.

Maayan Franco, Rosi Fassler, Tzvi S Goldberg, Hanna Chole, Yogev Herz, S Hollis Woodard, Dana Reichmann, Guy Bloch
Author Information
  1. Maayan Franco: Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
  2. Rosi Fassler: Department of Biological Chemistry, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
  3. Tzvi S Goldberg: Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel. ORCID
  4. Hanna Chole: Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
  5. Yogev Herz: Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel. ORCID
  6. S Hollis Woodard: Department of Entomology, University of California, Riverside, CA 92521. ORCID
  7. Dana Reichmann: Department of Biological Chemistry, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel. ORCID
  8. Guy Bloch: Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel. ORCID

Abstract

Social organization is commonly dynamic, with extreme examples in annual social insects, but little is known about the underlying signals and mechanisms. Bumble bee larvae with close contact to a queen do not differentiate into gynes, pupate at an earlier age, and are commonly smaller than siblings that do not contact a queen. We combined detailed observations, proteomics, microRNA transcriptomics, and gland removal surgery to study the regulation of brood development and division of labor in the annual social bumble bee . We found that regurgitates fed to larvae by queens and workers differ in their protein and microRNA composition. The proteome of the regurgitate overlaps significantly with that of the mandibular (MG) and hypopharyngeal glands (HPG), suggesting that these exocrine glands are sources of regurgitate proteins. The proteome of the MG and HPG, but not the salivary glands, differs between queens and workers, with caste-specificity preserved for the MG and regurgitate proteomes. Queens subjected to surgical removal of the MG showed normal behavior, brood care, and weight gain, but failed to shorten larval development. These findings suggest that substances in the queen MG are fed to larvae and influence their developmental program. We suggest that when workers emerge and contribute to larval feeding, they dilute the effects of the queen substances, until she can no longer manipulate the development of all larvae. Longer developmental duration may allow female larvae to differentiate into gynes rather than to workers, mediating the colony transition from the ergonomic to the reproductive phase.

Keywords

References

  1. J Insect Physiol. 2000 Jan;46(1):47-57 [PMID: 12770258]
  2. Nat Biotechnol. 2008 Apr;26(4):407-15 [PMID: 18392026]
  3. PLoS One. 2013;8(3):e59884 [PMID: 23527280]
  4. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  5. Antioxid Redox Signal. 2017 Nov 20;27(15):1252-1267 [PMID: 28394178]
  6. Curr Opin Insect Sci. 2019 Oct;35:77-87 [PMID: 31426016]
  7. Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646 [PMID: 36370105]
  8. J Insect Physiol. 1997 Apr;43(4):373-381 [PMID: 12769899]
  9. J Chem Ecol. 2011 Nov;37(11):1263-75 [PMID: 22083225]
  10. J Comp Physiol A. 2000 Nov;186(11):1089-94 [PMID: 11195284]
  11. Behav Ecol Sociobiol. 2011 Jun;65(6):1179-1190 [PMID: 21743768]
  12. Sci Rep. 2017 Mar 31;7:45674 [PMID: 28361900]
  13. Proc Natl Acad Sci U S A. 1974 Mar;71(3):671-4 [PMID: 16592144]
  14. Elife. 2016 Nov 29;5: [PMID: 27894417]
  15. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  16. Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9 [PMID: 23203882]
  17. Annu Rev Entomol. 2008;53:523-42 [PMID: 17877458]
  18. Science. 2014 Jan 17;343(6168):287-90 [PMID: 24436417]
  19. Proc Biol Sci. 2020 May 27;287(1927):20200614 [PMID: 32453984]
  20. Evolution. 1979 Mar;33(1Part2):319-334 [PMID: 28568180]
  21. Nature. 2011 May 26;473(7348):478-83 [PMID: 21516106]
  22. Proc Biol Sci. 2015 Oct 22;282(1817):20151800 [PMID: 26490791]
  23. Vitam Horm. 1965;23:359-82 [PMID: 5326344]
  24. Nat Biotechnol. 2022 Jul;40(7):1023-1025 [PMID: 34980915]
  25. J Agric Food Chem. 2012 Jun 20;60(24):6139-49 [PMID: 22642680]
  26. Science. 2002 Apr 12;296(5566):311-3 [PMID: 11951035]
  27. PLoS One. 2015 Feb 23;10(2):e0116199 [PMID: 25706417]
  28. Biol Rev Camb Philos Soc. 2013 Nov;88(4):944-54 [PMID: 23521745]
  29. Genome Biol. 2015 Apr 24;16:76 [PMID: 25908251]
  30. J Exp Biol. 2006 Mar;209(Pt 6):1044-51 [PMID: 16513930]
  31. PLoS Genet. 2017 Aug 31;13(8):e1006946 [PMID: 28859085]
  32. Cell Rep. 2019 May 14;27(7):1949-1959.e6 [PMID: 31056439]
  33. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  34. BMC Ecol Evol. 2021 Feb 9;21(1):20 [PMID: 33563224]
  35. J Exp Biol. 2013 Sep 15;216(Pt 18):3474-82 [PMID: 23966589]
  36. Nature. 1995 Mar 16;374(6519):227-32 [PMID: 7885442]
  37. Naturwissenschaften. 2003 Oct;90(10):477-80 [PMID: 14564409]
  38. Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2302071120 [PMID: 37903277]
  39. Mol Cell. 2019 May 2;74(3):598-608.e6 [PMID: 31051140]
  40. Mol Ecol. 2021 Feb;30(3):718-735 [PMID: 33238067]
  41. R Soc Open Sci. 2016 Oct 19;3(10):160576 [PMID: 27853577]
  42. Nucleic Acids Res. 2022 Jan 7;50(D1):D1032-D1039 [PMID: 34747465]
  43. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12963-8 [PMID: 20615972]
  44. Conserv Physiol. 2021 Jun 29;9(1):coab047 [PMID: 34221405]

Grants

  1. IS-5077-18 R/United States - Israel Binational Agricultural Research and Development Fund (BARD)
  2. 2017188/United States - Israel Binational Science Foundation (BSF)
  3. 1537/18/Israel Science Foundation (ISF)

MeSH Term

Bees
Female
Animals
Proteome
Larva
Reproduction
Exocrine Glands
MicroRNAs

Chemicals

Proteome
MicroRNAs

Word Cloud

Created with Highcharts 10.0.0queenlarvaeMGglandsbeedevelopmentworkersannualsocialbumbleregurgitatemandibularlarvalsubstancesorganizationcommonlycontactdifferentiategynesmicroRNAremovalbroodfedqueensproteomeHPGsuggestdevelopmentaleffectscolonySocialdynamicextremeexamplesinsectslittleknownunderlyingsignalsmechanismsBumbleclosepupateearlieragesmallersiblingscombineddetailedobservationsproteomicstranscriptomicsglandsurgerystudyregulationdivisionlaborfoundregurgitatesdifferproteincompositionoverlapssignificantlyhypopharyngealsuggestingexocrinesourcesproteinssalivarydifferscaste-specificitypreservedproteomesQueenssubjectedsurgicalshowednormalbehaviorcareweightgainfailedshortenfindingsinfluenceprogramemergecontributefeedingdilutecanlongermanipulateLongerdurationmayallowfemalerathermediatingtransitionergonomicreproductivephaseSubstancesmediatecastedifferentiationevolution

Similar Articles

Cited By