N/S Co-Doped Graphene Aerogels as Superior Anode Materials for High-Rate Lithium-Ion Batteries.

Kaijie Gu, Peng Li, Guiyun Yi, Yuanfeng Wu, WenPeng Yang, Zhengting Zhang, Xiuxiu Zhang
Author Information
  1. Kaijie Gu: College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China.
  2. Peng Li: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China.
  3. Guiyun Yi: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China. ORCID
  4. Yuanfeng Wu: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China.
  5. WenPeng Yang: College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China.
  6. Zhengting Zhang: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China.
  7. Xiuxiu Zhang: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China.

Abstract

The nitrogen and sulfur co-doped graphene aerogel (SNGA) was synthesized by a one-pot hydrothermal route using graphene oxide as the starting material and thiourea as the S and N source. The obtained SNGA with a three-dimensionally hierarchical structure, providing more available pathways for the transport of lithium ions. The existing form of S and N was regulated by changing the calcination temperature and thiourea doping amount. The results revealed that high temperature could decompose -SO- functional groups and promote the transformation of C-S-C to C-S, ensuring the cyclic stability of electrode materials, and increasing the thiourea dosage amount introduced more pyridine nitrogen, improving the multiplicative performance of electrode materials. Benefiting from the synergistic effect of sulfur and nitrogen atoms, the prepared SNGA showed superior rate capability (107.8 mAh g at 5 A g), twice more than that of GA (52.8 mAh g), and excellent stability (232.1 mAh g at 1 A g after 300 cycles), 1.85 times more than that of GA (125.6 mAh g). The present study provides a detailed report on thiourea as a dopant to provide a sufficient basis for SNGA and a theoretical guide for further modifying.

Keywords

References

  1. J. Zhu, Y. Zhao, P. Ning, S. Tang, B. Mater. Sci. 2021, 44, 1–8.
  2. G. H. Moon, Y. Shin, D. Choi, B. W. Arey, G. J. Exarhos, C. M. Wang, W. Y. Choi, J. Liu, Nanoscale. 2013, 5, 6291–6296.
  3. C. Weng, S. Huang, T. Lu, J. F. Li, J. L. Li, J. B. Li, L. K. Pan, J. Colloid Interface Sci. 2023, 652, 208–217.
  4. J. Wei, C. Luo, H. Li, W. Lv, J. C. Liang, Y. Q. Deng, Z. J. Huang, C. Wang, F. Y. Kang, Q. H. Yang, Carbon. 2019, 149, 492–498.
  5. J. B. Li, J. L. Li, Z. B. Ding, X. L. Zhang, Y. Q. Li, T. Lu, Y. F. Yao, W. J. Mai, L. K. Pan, Chem. Eng. J. 2019, 378, 122108.
  6. J. F. Li, L. Han, X. L. Zhang, H. C. Sun, X. J. Liu, T. Lu, Y. F. Yao, L. K. Pan, Chem. Eng. J. 2021, 406, 126873.
  7. M. Ershadi, M. Javanbakht, S. A. Mozaffari, D. Brandell, M. T. Lee, B. Zahiri, J. Alloys Compd. 2020, 818, 152912.
  8. H. Shan, D. B. Xiong, X. F. Li, Y. P. Sun, B. Yan, D. J. Li, S. Lawes, Y. H. Cui, X. L. Sun, Appl. Surf. Sci. 2016, 364, 651–659.
  9. B. B. Kopuklu, A. Tasdemir, S. A. Gursel, A. Yurum, Carbon. 2021, 174, 158–172.
  10. K. Fu, Y. B. Wang, C. Y. Yan, Y. G. Yao, Y. N. Chen, J. Q. Dai, S. Lacey, Y. B. Wang, J. Y. Wan, T. L, Z. Y. Wang, Y. Xu, L. B. Hu, Adv. Mater. 2016, 28, 2587–2594.
  11. X. L. Fan, X. L. Chen, L. M. Dai, Curr. Opin. Colloid. In. 2015, 20, 429–438.
  12. B. Moorthy, R. Ponraj, J. H. Yun, J. E. Wang, D. J. Kim, D. K. Kim, ACS Appl. Energ. Mater. 2020, 3, 11053–11060.
  13. F. Q. Tang, T. T. Jiang, Y. Tan, X. Y. Xu, Y. K. Zhou, J. Alloys Compd. 2021, 854, 157135.
  14. P. Li, G. Y. Yi, Z. T. Zhang, H. Y. Fan, Y. F. Wu, W. W. Kang, X. X. Zhang, B. Xu, Y. L. Zhang, Q. S, Biomed. J. Sci Tech. Res. 2021, 38, 30693–30699.
  15. J. Xu, D. W. Su, W. X. Zhang, W. Z. Bao, G. X. Wang, J. Mater. Chem. A. 2016, 4, 17381–17393.
  16. X. X. Zou, D. P. Wu, Y. F. Mu, L. Y. Xing, W. C. Zhang, Z. Y. Gao, F. Xu, K. Jiang, Carbon. 2020, 159, 94–101.
  17. T. H. Nguyen, D. Yang, B. Zhu, H. Lin, T. Y. Ma, B. H. Jia, J. Mater. Chem. A. 2021, 9, 7366–7395.
  18. L. L. Zhang, H. X. Chen, X. Y. Lu, Y. Wang, L. L. Tan, D. P. Sui, W. Qi, Appl. Surf. Sci. 2020, 529, 147022.
  19. Y. J. Zhang, J. L. Li, Z. W. Gong, J. P. Xie, T. Lu, L. K. Pan, J. Colloid Interface Sci. 2021, 587, 489–498.
  20. H. Y. Fan, G. Y. Yi, Q. M. Tian, X. X. Zhang, B. L. Xing, C. X. Zhang, L. J. Chen, Y. L. Zhang, RSC Adv. 2020, 10, 36794–36805.
  21. H. Gürsu, Y. Güner, K. B. Dermenci, M. Gençten, U. Savaci, S. Turan, Y. Şahin, Ionics. 2020, 26, 4909–4919.
  22. Y. Liu, Y. X. Wang, X. N. Zheng, Y. Wang, Comput. Mater. Sci. 2017, 136, 44–51.
  23. Y. Y. Zhu, J. L. Cui, S. L. An, Z. Q. Li, Y. Q. Zhang, W. X. He, J. Alloys Compd. 2019, 810, 151932.
  24. R. Nankya, D. O. Opar, M. J. Kim, S. M. Paek, H. Jung, J. Solid State Chem. 2020, 289, 121451.
  25. J. H. Huo, Y. J. Ren, Y. J. Xue, Y. Liu, S. W. Guo, J. Alloys Compd. 2021, 868, 159183.
  26. G. He, M. Qiao, W. Y. Li, Y. Lu, T. T. Zhao, R. J. Zou, B. Li, J. A. Darr, J. Q. Hu, M. Titirici, I. P. Parkin, Adv. Sci. 2017, 4, 1600214.
  27. L. T. Xu, W. Lv, K. Shi, S. J. Xiao, C. H. You, Y. B. He, F. Y. Kang, Q. H. Yang, Carbon. 2019, 149, 257–262.
  28. R. H. Li, J. L. Li, K. Y. Qi, X. Ge, Q. W. Zhang, B. W. Zhang, Appl. Surf. Sci. 2018, 433, 367–373.
  29. D. D. Cai, C. S. Wang, C. Y. Shi, N. Tan, J. Alloys Compd. 2018, 731, 235–242.
  30. J. D. Bagley, D. K. Kumar, K. A. See, N. C. Yeh, RSC Adv. 2020, 10, 39562–39571.
  31. Y. Q. Zhou, Y. Zeng, D. D. Xu, P. H. Li, H. G. Wang, X. Li, Y. H. Li, Y. H. Wang, Electrochim. Acta. 2015, 184, 24–31.
  32. S. F. Pei, H. M. Cheng, Carbon. 2012, 50, 3210–3228.
  33. Y. B. Kang, B. Wang, Y. P. Yan, H. H. Rana, J. Y. Lee, J. H. Kim, H. S. Park, Mater. Today Commun. 2020, 25, 101495.
  34. J. K. Zhu, W. M. Tu, H. F. Pan, H. Zhang, B. Liu, Y. P. Cheng, Z. Deng, H. N. Zhang, ACS Nano 2020, 14, 5780–5787.
  35. D. Y. Guo, Z. H. Zhang, B. Xi, Z. S. Yu, Z. Zhou, X. Chen, J. Mater. Chem. A. 2020, 8, 3834–3844.
  36. R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, K. Maegawa, W. K. Tan, G. Kawamura, A. Matsuda, Mater. Today. 2020, 39, 47–65.
  37. T. H. Nguyen, D. Yang, B. Zhu, H. Lin, T. Y. Ma, B. H. Jia, J. Mater. Chem. A. 2021, 9, 7366–7395.
  38. X. W. Wang, G. Z. Sun, P. Routh, D. H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067–7098.
  39. C. N. R. Rao, K. Gopalakrishnan, A. Govindaraj, Nano Today 2014, 9, 324–343.
  40. D. F. Sun, J. Yang, X. B. Yan, Chem. Commun. 2015, 51, 2134–2137.
  41. X. Jiao, Q. Hao, P. Liu, X. Xia, W. Lei, X. Liu, Sci. China Mater. 2018, 61, 273–284.
  42. B. L. Liu, Z. J. Liu, D. Li, P. Q. Guo, D. Q. Liu, X. N. Shang, M. Z. Lv, D. Y. He, Appl. Surf. Sci. 2017, 416, 858–867.
  43. S. J. An, J. L. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood III, Carbon. 2016, 105, 52–76.
  44. G. Y. Yi, P. Li, B. L. Xing, Q. M. Tian, X. X. Zhang, B. Xu, G. X. Huang, L. J. Chen, Y. L. Zhang, J. Solid State Chem. 2021, 294, 121859.
  45. B. L. Xing, H. H. Zeng, G. X. Huang, C. X. Zhang, R. F. Yuan, Y. J. Cao, Z. F. Chen, J. L. Yu, J. Alloys Compd. 2019, 779, 202–211.
  46. S. W. Park, H. J. Shin, Y. J. Heo, D. W. Kim, Appl. Surf. Sci. 2021, 540, 148358.
  47. H. Shan, X. F. Li, Y. H. Cui, D. B. Xiong, B. Yan, D. J. Li, X. L. Sun, Electrochim. Acta. 2016, 205, 188–197.
  48. W. H. Antink, Y. J. Choi, K. D. Seong, J. M. Kim, Y. Z. Piao, Adv. Mater. Interfaces. 2018, 5, 1701212.
  49. X. Li, X. H. Sun, X. D. Hu, F. R. Fan, S. Cai, C. M. Zheng, G. D. Stucky, Nano Energy. 2020, 77, 105143.
  50. Y. S. Yun, V. D. Le, H. Kim, S. J. Chang, S. J. Baek, S. Park, H. J. Jin, J. Power Sources 2014, 262, 79–85.
  51. H. H. Zhao, B. L. Xing, C. Zhang, G. X. Huang, Q. R. Liu, G. Y. Yi, J. B. Jia, M. J. Ma, Z. F. Chen, C. X. Zhang, J. Alloys Compd. 2018, 766, 705–715.
  52. Y. Xie, Z. Meng, T. W. Cai, W. Q. Han, Acs. Appl. Mater. Interfaces. 2015, 7, 25202–25210.
  53. Z. Chen, L. Jin, W. Hao, W. Ren, H. M. Cheng, Mater. Today. Nano. 2019, 5, 100027.
  54. H. H. Zhao, B. L. Xing, C. Zhang, G. X. Huang, J. Yu, Z. D. Jiang, X. X. Qu, X. J. Wu, Y. J. Cao, C. X. Zhang, Alloy. Compd. 2020, 848, 156423.
  55. G. X. Huang, Y. B. Liu, H. Chen, B. L. Xing, Y. Y. Li, Y. H. Yao, J. B. Jia, Q. R. Liu, C. X. Zhang, J. Power Sources 2021, 482, 228922.
  56. K. Wang, Z. Li, J. Nanosci. Nanotechnol. 2020, 20, 7673–7679.
  57. Z. Y. Sui, C. Y. Wang, Q. S. Yang, K. W. Shu, Y. W. Liu, B. H. Han, G. G. Wallace, J. Mater. Chem. A. 2015, 3, 18229–18237.
  58. G. L. Zhuang, J. Q. Bai, X. Y. Tao, J. M. Luo, X. D. Wang, Y. F. Gao, X. Zhong, X. N. Li, J. G. Wang, J. Mater. Chem. A. 2015, 3, 20244–20253.
  59. T. Wang, L. X. Wang, D. L. Wu, W. Xia, D. Z. Jia, Sci. Rep. 2015, 5, 9591.
  60. Y. Q. Zhang, L. Tao, C. Xie, D. D. Wang, Y. Q. Zou, R. Chen, Y. Y. Wang, C. K. Jia, S. Y. Wang, Adv. Mater. 2020, 32, 1905923.
  61. W. Q. Zhang, P. Li, G. Y. Yi, Y. Liu, X. D. Wang, Y. F. Wu, Z. T. Zhang, X. X. Zhang, Y. L. Zhang, Q. Sun, J. Alloys Compd. 2023, 967, 171661.

Grants

  1. 202102210183/Key Scientific and Technological Project of Henan Province
  2. GZS2020012/Outstanding Foreign Scientists Studio of Coal Green Conversion of Henan Province

Word Cloud

Created with Highcharts 10.0.0SNGAthioureanitrogengraphenematerialssulfurSNlithiumtemperatureamountstabilityelectrode8 mAh gGAco-dopedaerogelsynthesizedone-pothydrothermalrouteusingoxidestartingmaterialsourceobtainedthree-dimensionallyhierarchicalstructureprovidingavailablepathwaystransportionsexistingformregulatedchangingcalcinationdopingresultsrevealedhighdecompose-SO-functionalgroupspromotetransformationC-S-CC-SensuringcyclicincreasingdosageintroducedpyridineimprovingmultiplicativeperformanceBenefitingsynergisticeffectatomspreparedshowedsuperiorratecapability1075 A gtwice52excellent2321 mAh g1 A g300cycles185times1256 mAh gpresentstudyprovidesdetailedreportdopantprovidesufficientbasistheoreticalguidemodifyingN/SCo-DopedGrapheneAerogelsSuperiorAnodeMaterialsHigh-RateLithium-IonBatteriesanodeco-dopingenergystorageaerogelsionbatteries

Similar Articles

Cited By