Cerebral Spinal Fluid Volumetrics and Paralimbic Predictors of Executive Dysfunction in Congenital Heart Disease: A Machine Learning Approach Informing Mechanistic Insights.

Vince K Lee, Julia Wallace, Benjamin Meyers, Adriana Racki, Anushka Shah, Nancy H Beluk, Laura Cabral, Sue Beers, Daryaneh Badaly, Cecilia Lo, Ashok Panigrahy, Rafael Ceschin
Author Information
  1. Vince K Lee: Department of Radiology, University of Pittsburgh School of Medicine.
  2. Julia Wallace: Department of Radiology, University of Pittsburgh School of Medicine.
  3. Benjamin Meyers: Department of Radiology, University of Pittsburgh School of Medicine.
  4. Adriana Racki: Department of Radiology, University of Pittsburgh School of Medicine.
  5. Anushka Shah: Department of Radiology, University of Pittsburgh School of Medicine.
  6. Nancy H Beluk: Department of Radiology, University of Pittsburgh School of Medicine.
  7. Laura Cabral: Department of Radiology, University of Pittsburgh School of Medicine.
  8. Sue Beers: Department of Psychiatry, University of Pittsburgh Medical Center.
  9. Daryaneh Badaly: Learning and Development Center, Child Mind Institute.
  10. Cecilia Lo: Department of Developmental Biology, University of Pittsburgh School of Medicine.
  11. Ashok Panigrahy: Department of Radiology, University of Pittsburgh School of Medicine.
  12. Rafael Ceschin: Department of Radiology, University of Pittsburgh School of Medicine.

Abstract

The relationship between increased cerebral spinal fluid (CSF) ventricular compartments, structural and microstructural dysmaturation, and executive function in patients with congenital heart disease (CHD) is unknown. Here, we leverage a novel machine-learning data-driven technique to delineate interrelationships between CSF ventricular volume, structural and microstructural alterations, clinical risk factors, and sub-domains of executive dysfunction in adolescent CHD patients. We trained random forest regression models to predict measures of executive function (EF) from the NIH Toolbox, the Delis-Kaplan Executive Function System (D-KEFS), and the Behavior Rating Inventory of Executive Function (BRIEF) and across three subdomains of EF - mental flexibility, working memory, and inhibition. We estimated the best parameters for the random forest algorithm via a randomized grid search of parameters using 10-fold cross-validation on the training set only. The best parameters were then used to fit the model on the full training set and validated on the test set. Algorithm performance was measured using root-mean squared-error (RMSE). As predictors, we included patient clinical variables, perioperative clinical measures, microstructural white matter (diffusion tensor imaging- DTI), and structural volumes (volumetric magnetic resonance imaging- MRI). Structural white matter was measured using along-tract diffusivity measures of 13 inter-hemispheric and cortico-association fibers. Structural volumes were measured using FreeSurfer and manual segmentation of key structures. Variable importance was measured by the average Gini-impurity of each feature across all decision trees in which that feature is present in the model, and functional ontology mapping (FOM) was used to measure the degree of overlap in feature importance for each EF subdomain and across subdomains. We found that CSF structural properties (including increased lateral ventricular volume and reduced choroid plexus volumes) in conjunction with proximate cortical projection and paralimbic-related association white matter tracts that straddle the lateral ventricles and distal paralimbic-related subcortical structures (basal ganglia, hippocampus, cerebellum) are predictive of two-specific subdomains of executive dysfunction in CHD patients: cognitive flexibility and inhibition. These findings in conjunction with combined RF models that incorporated clinical risk factors, highlighted important clinical risk factors, including the presence of microbleeds, altered vessel volume, and delayed PDA closure, suggesting that CSF-interstitial fluid clearance, vascular pulsatility, and glymphatic microfluid dynamics may be pathways that are impaired in CHD, providing mechanistic information about the relationship between CSF and executive dysfunction.

References

  1. J Am Heart Assoc. 2015 Dec 14;4(12): [PMID: 26667085]
  2. J Neurosurg. 2017 Mar;126(3):945-971 [PMID: 27257832]
  3. J Clin Med. 2023 Aug 12;12(16): [PMID: 37629306]
  4. Sci Transl Med. 2012 Aug 15;4(147):147ra111 [PMID: 22896675]
  5. Cerebrospinal Fluid Res. 2008 May 14;5:10 [PMID: 18479516]
  6. Circulation. 2011 Sep 20;124(12):1361-9 [PMID: 21875911]
  7. Trends Neurosci. 2019 Mar;42(3):192-204 [PMID: 30616953]
  8. Sci Rep. 2020 Feb 28;10(1):3677 [PMID: 32111882]
  9. Parkinsonism Relat Disord. 2021 Aug;89:98-104 [PMID: 34271425]
  10. Hum Brain Mapp. 2018 Nov;39(11):4593-4610 [PMID: 30076775]
  11. Neuron. 2011 Mar 24;69(6):1046-60 [PMID: 21435552]
  12. Front Aging Neurosci. 2021 Jul 19;13:693787 [PMID: 34349635]
  13. Clin Sci (Lond). 2017 Aug 10;131(17):2257-2274 [PMID: 28798076]
  14. Semin Thorac Cardiovasc Surg. 2022 Winter;34(4):1285-1295 [PMID: 34767938]
  15. AJNR Am J Neuroradiol. 2014 Aug;35(8):1593-9 [PMID: 24651820]
  16. Nature. 2015 May 28;521(7553):520-4 [PMID: 25807483]
  17. J Pediatr. 2016 Nov;178:141-148.e1 [PMID: 27574995]
  18. Child Neuropsychol. 2023 Nov;29(7):1064-1087 [PMID: 36377081]
  19. J Pediatr. 2014 Nov;165(5):936-44.e1-2 [PMID: 25217200]
  20. Pediatr Res. 2017 Jun;81(6):881-890 [PMID: 28157834]
  21. Sci Rep. 2019 Jul 26;9(1):10885 [PMID: 31350426]
  22. Child Neuropsychol. 2024 Jan 22;:1-20 [PMID: 38247350]
  23. Annu Rev Psychol. 2013;64:135-68 [PMID: 23020641]
  24. Brain. 2014 Jan;137(Pt 1):268-76 [PMID: 24277720]
  25. Circulation. 2010 Jan 5;121(1):26-33 [PMID: 20026783]
  26. Ann Thorac Surg. 2019 Jun;107(6):1838-1844 [PMID: 30639363]
  27. Sci Rep. 2022 Nov 12;12(1):19430 [PMID: 36371527]
  28. Br J Radiol. 2023 Nov;96(1151):20230016 [PMID: 37191063]
  29. Neuroimage. 2018 Sep;178:183-197 [PMID: 29793060]
  30. Metabolites. 2022 Sep 19;12(9): [PMID: 36144286]
  31. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  32. Neuroimage. 2021 Sep;238:118257 [PMID: 34118396]
  33. Laterality. 2003 Apr;8(2):169-87 [PMID: 15513221]
  34. Cardiol Young. 2015 Oct;25(7):1238-46 [PMID: 26082199]
  35. Neuroimage Rep. 2022 Sep;2(3): [PMID: 36258783]
  36. Magn Reson Med Sci. 2024 Jan 1;23(1):1-13 [PMID: 36436975]
  37. J Neurodev Disord. 2018 Dec 13;10(1):39 [PMID: 30541429]
  38. J Thorac Cardiovasc Surg. 2014 Nov;148(5):2190-9 [PMID: 24951021]
  39. J Pediatr. 2015 Dec;167(6):1259-63.e1 [PMID: 26233604]
  40. Circulation. 2016 May 17;133(20):1951-62 [PMID: 27185022]
  41. Pediatr Res. 2018 Jan;83(1-1):63-70 [PMID: 29278641]
  42. Annu Rev Psychol. 2016;67:587-612 [PMID: 26393866]
  43. Neuroimage Clin. 2020;25:102123 [PMID: 31869770]
  44. Sci Rep. 2017 Nov 8;7(1):15088 [PMID: 29118365]
  45. Front Neurol. 2022 Mar 09;13:827780 [PMID: 35356449]
  46. PLoS One. 2014 Apr 02;9(4):e93484 [PMID: 24695551]
  47. Trends Mol Med. 2014 Feb;20(2):83-90 [PMID: 24275328]
  48. Br J Radiol. 2011 Aug;84(1004):758-65 [PMID: 21586507]
  49. Can J Cardiol. 2023 Feb;39(2):123-132 [PMID: 36336305]
  50. J Pediatr. 2014 May;164(5):1121-1127.e1 [PMID: 24367983]
  51. J Pediatr. 2023 Mar;254:25-32 [PMID: 36241053]
  52. Eur J Cardiothorac Surg. 2017 Apr 1;51(4):740-746 [PMID: 28013288]
  53. J Pediatr. 2011 Jun;158(6):984-9 [PMID: 21237469]
  54. Biomolecules. 2019 Dec 16;9(12): [PMID: 31888141]
  55. Int J Cardiol. 2020 May 1;306:61-66 [PMID: 32143921]

Grants

  1. R01 HL128818/NHLBI NIH HHS
  2. R01 HL152740/NHLBI NIH HHS
  3. T15 LM007059/NLM NIH HHS

Word Cloud

Created with Highcharts 10.0.0executiveclinicalCSFstructuralCHDusingmeasuredventricularmicrostructuralvolumeriskfactorsdysfunctionmeasuresEFExecutiveacrosssubdomainsparameterssetwhitemattervolumesfeaturerelationshipincreasedfluidfunctionpatientsrandomforestmodelsFunctionflexibilityinhibitionbesttrainingusedmodelimaging-Structuralstructuresimportanceincludinglateralconjunctionparalimbic-relatedcerebralspinalcompartmentsdysmaturationcongenitalheartdiseaseunknownleveragenovelmachine-learningdata-driventechniquedelineateinterrelationshipsalterationssub-domainsadolescenttrainedregressionpredictNIHToolboxDelis-KaplanSystemD-KEFSBehaviorRatingInventoryBRIEFthree-mentalworkingmemoryestimatedalgorithmviarandomizedgridsearch10-foldcross-validationfitfullvalidatedtestAlgorithmperformanceroot-meansquared-errorRMSEpredictorsincludedpatientvariablesperioperativediffusiontensorDTIvolumetricmagneticresonanceMRIalong-tractdiffusivity13inter-hemisphericcortico-associationfibersFreeSurfermanualsegmentationkeyVariableaverageGini-impuritydecisiontreespresentfunctionalontologymappingFOMmeasuredegreeoverlapsubdomainfoundpropertiesreducedchoroidplexusproximatecorticalprojectionassociationtractsstraddleventriclesdistalsubcorticalbasalgangliahippocampuscerebellumpredictivetwo-specificpatients:cognitivefindingscombinedRFincorporatedhighlightedimportantpresencemicrobleedsalteredvesseldelayedPDAclosuresuggestingCSF-interstitialclearancevascularpulsatilityglymphaticmicrofluiddynamicsmaypathwaysimpairedprovidingmechanisticinformationCerebralSpinalFluidVolumetricsParalimbicPredictorsDysfunctionCongenitalHeartDisease:MachineLearningApproachInformingMechanisticInsights

Similar Articles

Cited By