Methylxanthine for the prevention and treatment of apnea in preterm infants.

Keri A Marques, Matteo Bruschettini, Charles C Roehr, Peter G Davis, Michelle Fiander, Roger Soll
Author Information
  1. Keri A Marques: Division of Neonatal-Perinatal Medicine, University of Vermont, Burlington, Vermont, USA.
  2. Matteo Bruschettini: Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
  3. Charles C Roehr: National Perinatal Epidemiology Unit, Clinical Trials Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK.
  4. Peter G Davis: Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, Australia.
  5. Michelle Fiander: Cochrane Neonatal Group, Halifax (NS), Canada.
  6. Roger Soll: Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA.

Abstract

BACKGROUND: Very preterm infants often require respiratory support and are therefore exposed to an increased risk of chronic lung disease and later neurodevelopmental disability. Although methylxanthines are widely used to prevent and treat apnea associated with prematurity and to facilitate extubation, there is uncertainty about the benefits and harms of different types of methylxanthines.
OBJECTIVES: To assess the effects of methylxanthines on the incidence of apnea, death, neurodevelopmental disability, and other longer-term outcomes in preterm infants (1) at risk for or with apnea, or (2) undergoing extubation.
SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, two other databases, and three trial registers (November 2022).
SELECTION CRITERIA: We included randomized trials in preterm infants, in which methylxanthines (aminophylline, caffeine, or theophylline) were compared to placebo or no treatment for any indication (i.e. prevention of apnea, treatment of apnea, or prevention of re-intubation).
DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods and GRADE to assess the certainty of evidence.
MAIN RESULTS: We included 18 studies (2705 infants), evaluating the use of methylxanthine in preterm infants for: any indication (one study); prevention of apnea (six studies); treatment of apnea (five studies); and to prevent re-intubation (six studies). Death or major neurodevelopmental disability (DMND) at 18 to 24 months. Only the Caffeine for Apnea of Prematurity (CAP) study (enrolling 2006 infants) reported on this outcome. Overall, caffeine probably reduced the risk of DMND in preterm infants treated with caffeine for any indication (risk ratio (RR) 0.87, 95% confidence interval (CI) 0.78 to 0.97; risk difference (RD) -0.06, 95% CI -0.10 to -0.02; number needed to treat for an additional beneficial outcome (NNTB) 16, 95% CI 10 to 50; 1 study, 1869 infants; moderate-certainty evidence). No other trials reported DMND. Results from the CAP trial regarding DMND at 18 to 24 months are less precise when analyzed based on treatment indication. Caffeine probably results in little or no difference in DMND in infants treated for prevention of apnea (RR 1.00, 95% CI 0.80 to 1.24; RD -0.00, 95% CI -0.10 to 0.09; 1 study, 423 infants; moderate-certainty evidence) and probably results in a slight reduction in DMND in infants treated for apnea of prematurity (RR 0.85, 95% CI 0.71 to 1.01; RD -0.06, 95% CI -0.13 to 0.00; NNTB 16, 95% CI 7 to > 1000; 1 study, 767 infants; moderate-certainty evidence) or to prevent re-intubation (RR 0.85, 95% CI 0.73 to 0.99; RD -0.08, 95% CI -0.15 to -0.00; NNTB 12, 95% CI 6 to >1000; 1 study, 676 infants; moderate-certainty evidence). Death. In the overall analysis of any methylxanthine treatment for any indication, methylxanthine used for any indication probably results in little or no difference in death at hospital discharge (RR 0.99, 95% CI 0.71 to 1.37; I = 0%; RD -0.00, 95% CI -0.02 to 0.02; I = 5%; 7 studies, 2289 infants; moderate-certainty evidence). Major neurodevelopmental disability at 18 to 24 months. In the CAP trial, caffeine probably reduced the risk of major neurodevelopmental disability at 18 to 24 months (RR 0.85, 95% CI 0.76 to 0.96; RD -0.06, 95% CI -0.10 to -0.02; NNTB 16, 95% CI 10 to 50; 1 study, 1869 infants; moderate-certainty evidence), including a reduction in the risk of cerebral palsy or gross motor disability (RR 0.60, 95% CI 0.41 to 0.88; RD -0.03, 95% CI -0.05 to -0.01; NNTB 33, 95% CI 20 to 100; 1 study, 1810 infants; moderate-certainty evidence) and a marginal reduction in the risk of developmental delay (RR 0.88, 95% CI 0.78 to 1.00; RD -0.05, 95% CI -0.09 to -0.00; NNTB 20, 95% CI 11 to > 1000; 1 study, 1725 infants; moderate-certainty evidence). Any apneic episodes, failed apnea reduction after two to seven days (< 50% reduction in apnea) (for infants treated with apnea), and need for positive-pressure ventilation after institution of treatment. Methylxanthine used for any indication probably reduces the occurrence of any apneic episodes (RR 0.31, 95% CI 0.18 to 0.52; I = 47%; RD -0.38, 95% CI -0.51 to -0.25; I = 49%; NNTB 3, 95% CI 2 to 4; 4 studies, 167 infants; moderate-certainty evidence), failed apnea reduction after two to seven days (RR 0.48, 95% CI 0.33 to 0.70; I = 0%; RD -0.31, 95% CI -0.44 to -0.17; I = 53%; NNTB 3, 95% CI 2 to 6; 4 studies, 174 infants; moderate-certainty evidence), and may reduce receipt of positive-pressure ventilation after institution of treatment (RR 0.61, 95% CI 0.39 to 0.96; I = 0%; RD -0.06, 95% CI -0.11 to -0.01; I = 49%; NNTB 16, 95% CI 9 to 100; 9 studies, 373 infants; low-certainty evidence). Chronic lung disease. Methylxanthine used for any indication reduces chronic lung disease (defined as the use of supplemental oxygen at 36 weeks' postmenstrual age) (RR 0.77, 95% CI 0.69 to 0.85; I = 0%; RD -0.10, 95% CI -0.14 to -0.06; I = 18%; NNTB 10, 95% CI 7 to 16; 4 studies, 2142 infants; high-certainty evidence). Failure to extubate or the need for re-intubation within one week after initiation of therapy. Methylxanthine used for the prevention of re-intubation probably results in a large reduction in failed extubation compared with no treatment (RR 0.48, 95% CI 0.32 to 0.71; I = 0%; RD -0.27, 95% CI -0.39 to -0.15; I = 69%; NNTB 4, 95% CI 2 to 6; 6 studies, 197 infants; moderate-certainty evidence).
AUTHORS' CONCLUSIONS: Caffeine probably reduces the risk of death, major neurodevelopmental disability at 18 to 24 months, and the composite outcome DMND at 18 to 24 months. Administration of any methylxanthine to preterm infants for any indication probably leads to a reduction in the risk of any apneic episodes, failed apnea reduction after two to seven days, cerebral palsy, developmental delay, and may reduce receipt of positive-pressure ventilation after institution of treatment. Methylxanthine used for any indication reduces chronic lung disease (defined as the use of supplemental oxygen at 36 weeks' postmenstrual age).

References

  1. Pediatr Neonatol. 2016 Oct;57(5):408-412 [PMID: 26976495]
  2. BMJ Open. 2020 Nov 6;10(11):1 [PMID: 33158841]
  3. Arch Dis Child Fetal Neonatal Ed. 2000 Jul;83(1):F39-43 [PMID: 10873170]
  4. Nutrients. 2013 Oct 18;5(10):4159-73 [PMID: 24145871]
  5. JAMA Pediatr. 2015 Jan;169(1):33-8 [PMID: 25402629]
  6. Pediatrics. 1979 Apr;63(4):537-42 [PMID: 440863]
  7. Pediatr Pulmonol. 2020 Oct;55(10):2635-2640 [PMID: 32639634]
  8. J Pediatr. 1983 Dec;103(6):975-8 [PMID: 6644439]
  9. Ther Drug Monit. 2008 Dec;30(6):709-16 [PMID: 19057373]
  10. Aust Paediatr J. 1981 Dec;17(4):273-6 [PMID: 7347216]
  11. Cochrane Database Syst Rev. 2013 Jan 31;(1):CD003311 [PMID: 23440789]
  12. Cochrane Database Syst Rev. 2023 Apr 11;4:CD013873 [PMID: 37040532]
  13. J Paediatr Child Health. 2009 Oct;45(10):587-92 [PMID: 19751376]
  14. J Pediatr. 2018 May;196:52-57 [PMID: 29519541]
  15. Clin Ther. 1986;8(4):439-49 [PMID: 3731212]
  16. Crit Care Med. 1993 Jun;21(6):846-50 [PMID: 8504651]
  17. Behav Brain Res. 1992 Jul 31;49(1):1-6 [PMID: 1388792]
  18. Pediatrics. 1988 Oct;82(4):527-32 [PMID: 3174313]
  19. Int J Environ Res Public Health. 2021 Apr 23;18(9): [PMID: 33922783]
  20. Pediatrics. 1978 Apr;61(4):651-2 [PMID: 662490]
  21. Pediatrics. 1997 Sep;100(3 Pt 1):354-9 [PMID: 9282705]
  22. Pediatrics. 2019 Jan;143(1): [PMID: 30518670]
  23. Iran J Public Health. 2019 Jul;48(7):1278-1283 [PMID: 31497549]
  24. J Pediatr. 1978 Apr;92(4):529-34 [PMID: 305471]
  25. Pediatrics. 2011 Jan;127(1):e146-55 [PMID: 21173002]
  26. Res Synth Methods. 2018 Dec;9(4):602-614 [PMID: 29314757]
  27. J Clin Epidemiol. 2021 May;133:130-139 [PMID: 33476769]
  28. Paediatr Drugs. 2020 Aug;22(4):399-408 [PMID: 32488731]
  29. J Pediatr. 1981 Dec;99(6):984-9 [PMID: 7310594]
  30. Am J Respir Crit Care Med. 2017 Nov 15;196(10):1318-1324 [PMID: 28707987]
  31. Cochrane Database Syst Rev. 2010 Dec 08;(12):CD000140 [PMID: 21154343]
  32. Arch Dis Child Fetal Neonatal Ed. 2006 Jan;91(1):F61-4 [PMID: 16204358]
  33. Early Hum Dev. 1985 Oct;12(1):15-22 [PMID: 3905342]
  34. Eur J Pediatr. 2015 Jul;174(7):949-56 [PMID: 25644724]
  35. Iran Red Crescent Med J. 2014 Aug;16(8):e12559 [PMID: 25389472]
  36. Acta Paediatr Scand. 1989 Sep;78(5):786-8 [PMID: 2688355]
  37. Early Hum Dev. 1998 Jan 9;50(2):185-92 [PMID: 9483391]
  38. Minerva Pediatr. 2020 Apr;72(2):95-100 [PMID: 30961342]
  39. Arch Iran Med. 2022 Feb 01;25(2):98-104 [PMID: 35429946]
  40. J Pediatr. 2015 Jul;167(1):70-5 [PMID: 25982138]
  41. Cochrane Database Syst Rev. 2023 Oct 31;10:CD013830 [PMID: 37905735]
  42. J Paediatr Child Health. 2000 Feb;36(1):47-50 [PMID: 10723691]
  43. Pediatrics. 2003 Apr;111(4 Pt 1):914-7 [PMID: 12671135]
  44. JAMA Pediatr. 2017 Jun 1;171(6):564-572 [PMID: 28437520]
  45. J Pediatr. 2010 Mar;156(3):382-7 [PMID: 19926098]
  46. Early Hum Dev. 1988 Mar;16(2-3):235-43 [PMID: 2454186]
  47. J Pediatr. 2001 Mar;138(3):355-60 [PMID: 11241042]
  48. Cochrane Database Syst Rev. 2010 Dec 08;(12):CD000139 [PMID: 21154342]
  49. JAMA Pediatr. 2019 May 1;173(5):487-489 [PMID: 30830144]
  50. Indian Pediatr. 2017 Apr 15;54(4):279-283 [PMID: 28474588]
  51. J Clin Epidemiol. 2020 Nov;127:142-150 [PMID: 32798713]
  52. ERJ Open Res. 2020 Mar 02;6(1): [PMID: 32154294]
  53. Eur J Pediatr. 1988 Apr;147(3):288-91 [PMID: 3292249]
  54. Pharmacol Toxicol. 1995 Feb;76(2):93-101 [PMID: 7746802]
  55. Ther Drug Monit. 1992 Feb;14(1):14-9 [PMID: 1546385]
  56. J Clin Epidemiol. 2021 May;133:140-151 [PMID: 33171275]
  57. Am J Respir Crit Care Med. 2014 Oct 1;190(7):791-9 [PMID: 25171195]
  58. Cochrane Database Syst Rev. 2000;(2):CD000273 [PMID: 10796190]
  59. Arch Ophthalmol. 2005 Jul;123(7):991-9 [PMID: 16009843]
  60. Pediatr Res. 2015 Aug;78(2):198-204 [PMID: 25856169]
  61. J Pediatr. 1999 Oct;135(4):526-8 [PMID: 10518091]
  62. Acta Paediatr. 2010 Sep;99(9):1319-23 [PMID: 20412101]
  63. Biol Neonate. 2000 Jul;78(1):27-32 [PMID: 10878419]
  64. Cochrane Database Syst Rev. 2010 Dec 08;(12):CD000432 [PMID: 21154344]
  65. J Perinatol. 2002 Jun;22(4):275-8 [PMID: 12032788]
  66. Arch Pediatr. 2003 Aug;10(8):734-5 [PMID: 12922011]
  67. Respir Physiol Neurobiol. 2020 Oct;281:103495 [PMID: 32679370]
  68. Clin Pharmacol Ther. 1980 Oct;28(4):536-40 [PMID: 7408413]
  69. J Paediatr Child Health. 2011 Apr;47(4):167-72 [PMID: 21244548]
  70. JAMA Pediatr. 2017 Feb 1;171(2):165-174 [PMID: 27918754]
  71. Pediatrics. 1987 Nov;80(5):684-8 [PMID: 3313257]
  72. Pediatr Res. 2017 Aug;82(2):290-296 [PMID: 28288150]
  73. J Perinatol. 2004 Dec;24(12):763-8 [PMID: 15329741]
  74. N Engl J Med. 2007 Nov 8;357(19):1893-902 [PMID: 17989382]
  75. Paediatr Drugs. 2014 Apr;16(2):169-77 [PMID: 24399614]
  76. Molecules. 2016 Jul 27;21(8): [PMID: 27472311]
  77. JAMA. 2012 Jan 18;307(3):275-82 [PMID: 22253394]
  78. Arch Dis Child. 1992 Apr;67(4 Spec No):425-8 [PMID: 1586184]
  79. Arch Dis Child. 1985 Oct;60(10):953-8 [PMID: 3904637]
  80. Aust Paediatr J. 1981 Dec;17(4):290-1 [PMID: 7347217]
  81. Science. 1978 Aug 18;201(4356):649-51 [PMID: 209541]
  82. J Neonatal Perinatal Med. 2017;10(4):355-362 [PMID: 29286928]
  83. Arch Dis Child. 1986 Sep;61(9):891-5 [PMID: 3767418]
  84. Pediatrics. 2001 Apr;107(4):660-3 [PMID: 11335740]
  85. J Clin Epidemiol. 2005 Jun;58(6):579-88 [PMID: 15878471]
  86. Acta Paediatr. 1995 Apr;84(4):360-4 [PMID: 7795341]
  87. Zhongguo Dang Dai Er Ke Za Zhi. 2016 Mar;18(3):206-10 [PMID: 26975815]
  88. BMJ Open. 2020 Oct 20;10(10):e038271 [PMID: 33082191]
  89. J Pediatr. 1985 Sep;107(3):469-72 [PMID: 3897500]
  90. Pak J Med Sci. 2019 Jan-Feb;35(1):113-116 [PMID: 30881407]
  91. Am J Dis Child. 1985 Jun;139(6):567-70 [PMID: 3890520]
  92. Pediatrics. 2002 May;109(5):784-7 [PMID: 11986437]
  93. Early Hum Dev. 1985 Oct;12(1):9-14 [PMID: 3905343]
  94. Dev Med Child Neurol. 1997 Apr;39(4):214-23 [PMID: 9183258]
  95. Ann Clin Transl Neurol. 2018 Sep 19;5(9):1112-1127 [PMID: 30250867]
  96. J Pediatr. 1987 Apr;110(4):636-9 [PMID: 3559816]
  97. Ann Surg. 1978 Jan;187(1):1-7 [PMID: 413500]
  98. Therapie. 1985 Jul-Aug;40(4):235-9 [PMID: 4024019]
  99. Am J Perinatol. 2015 Jul;32(9):879-86 [PMID: 25607226]
  100. J Matern Fetal Neonatal Med. 2022 Dec;35(25):6053-6061 [PMID: 33771081]
  101. JAMA Pediatr. 2014 Mar;168(3):250-7 [PMID: 24445955]
  102. JAMA. 2015 Aug 11;314(6):595-603 [PMID: 26262797]
  103. Arch Dis Child Fetal Neonatal Ed. 2006 Mar;91(2):F80-4 [PMID: 16204359]
  104. Pediatrics. 2018 May;141(5): [PMID: 29643070]
  105. Am J Dis Child. 1985 Jul;139(7):698-700 [PMID: 4014092]
  106. Am J Perinatol. 2023 Jan;40(1):28-34 [PMID: 33878772]
  107. Arch Fr Pediatr. 1990 Jun-Jul;47(6):461-5 [PMID: 2206108]
  108. Pediatr Res. 2002 Jul;52(1):50-5 [PMID: 12084847]
  109. J Clin Epidemiol. 2009 Oct;62(10):1006-12 [PMID: 19631508]
  110. Pharmacotherapy. 2000 Jun;20(6):644-52 [PMID: 10853619]
  111. Zhongguo Dang Dai Er Ke Za Zhi. 2019 Jun;21(6):558-561 [PMID: 31208509]
  112. J Pediatr. 1982 Jun;100(6):964-8 [PMID: 7086601]
  113. J Pediatr. 2010 Jul;157(1):69-73 [PMID: 20304417]
  114. Int J Prev Med. 2014 May;5(5):569-76 [PMID: 24932388]
  115. Arch Dis Child. 1982 Oct;57(10):761-5 [PMID: 6753769]
  116. J Pediatr. 1990 Apr;116(4):648-53 [PMID: 2181103]
  117. J Adv Pharm Technol Res. 2019 Jan-Mar;10(1):16-19 [PMID: 30815383]
  118. N Engl J Med. 2006 May 18;354(20):2112-21 [PMID: 16707748]
  119. Arch Dis Child Fetal Neonatal Ed. 2023 Mar;108(2):106-113 [PMID: 36038256]
  120. J Trop Pediatr. 2019 Jun 1;65(3):264-272 [PMID: 30085175]
  121. Arch Dis Child Fetal Neonatal Ed. 2004 Nov;89(6):F499-503 [PMID: 15499141]
  122. J Paediatr Child Health. 2003 Sep-Oct;39(7):511-5 [PMID: 12969204]
  123. Zhonghua Er Ke Za Zhi. 2016 Jan;54(1):33-6 [PMID: 26791921]
  124. J Pediatr. 2014 Aug;165(2):356-359.e2 [PMID: 24840756]

MeSH Term

Infant
Infant, Newborn
Humans
Infant, Premature
Caffeine
Apnea
Cerebral Palsy
Persons with Disabilities
Motor Disorders
Lung Diseases
Oxygen

Chemicals

methylxanthine
Caffeine
Oxygen

Word Cloud

Created with Highcharts 10.0.0095%CI-0infantsapneaevidence1RRRD=NNTBmoderate-certaintyrisktreatmentindicationstudiesstudyprobablyreduction18pretermdisabilityusedDMND241000neurodevelopmentalpreventionmonthsre-intubation06160%Methylxanthine4lungdiseasemethylxanthines2twocaffeinemethylxanthinetreated02results856failedreduceschronicpreventextubationdeathtrialusemajorCaffeineCAPoutcomedifference71017apneicepisodessevendayspositive-pressureventilationinstitutiontreatprematurityassessincludedtrialscomparedonesixDeathreportedreduced78501869little09>1000991596cerebralpalsy88053320100developmentaldelay11need3149%348mayreducereceipt399definedsupplementaloxygen36weeks'postmenstrualageBACKGROUND:oftenrequirerespiratorysupportthereforeexposedincreasedlaterAlthoughwidelyassociatedfacilitateuncertaintybenefitsharmsdifferenttypesOBJECTIVES:effectsincidencelonger-termoutcomesundergoingSEARCHMETHODS:searchedCENTRALMEDLINEEmbasedatabasesthreeregistersNovember2022SELECTIONCRITERIA:randomizedaminophyllinetheophyllineplaceboieDATACOLLECTIONANDANALYSIS:standardCochranemethodsGRADEcertaintyMAINRESULTS:2705evaluatingfor:fiveApneaPrematurityenrolling2006Overallratio87confidenceinterval97numberneededadditionalbeneficialResultsregardinglesspreciseanalyzedbased80423slight13767730812>1000676overallanalysishospitaldischarge375%2289Major76includinggrossmotor6041031810marginal1725<50%occurrence5247%38512516770441753%17461373low-certaintyChronic77691418%2142high-certaintyFailureextubatewithinweekinitiationtherapylarge322769%197AUTHORS'CONCLUSIONS:compositeAdministrationleads

Similar Articles

Cited By