A novel quorum sensing regulator LuxT contributes to the virulence of .

Yuehua Li, Junxiang Yan, Jinghao Li, Xinke Xue, Ying Wang, Boyang Cao
Author Information
  1. Yuehua Li: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
  2. Junxiang Yan: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
  3. Jinghao Li: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
  4. Xinke Xue: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
  5. Ying Wang: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
  6. Boyang Cao: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Abstract

is a waterborne bacterium that primarily infects the human intestine and causes cholera fatality. Quorum sensing (QS) negatively regulates the expression of virulence gene. However, the primary associated mechanisms remain undetermined. This investigation identified a new QS regulator from the TetR family, LuxT, which increases virulence by directly inhibiting expression. HapR is a master QS regulator that suppresses virulence cascade expression. The expression of increased 4.8-fold in the small intestine of infant mice than in Luria-Bertani broth. Δ mutant strain revealed a substantial defect in the colonizing ability of the small intestines. At low cell densities, the expression level of was upregulated by deletion, suggesting that LuxT can suppress transcription. The electrophoretic mobility shift analysis revealed that LuxT directly binds to the promoter region. Furthermore, expression was upregulated by the two-component system ArcB/ArcA, which responses to changes in oxygen levels in response to the host's small intestine's anaerobic signals. In conclusion, this research reveals a novel cell density-mediated virulence regulation pathway and contributes to understanding the complex association between virulence and QS signals. This evidence furnishes new insights for future studies on pathogenic mechanisms.

Keywords

References

  1. J Biol Chem. 2018 Aug 24;293(34):13214-13223 [PMID: 29945971]
  2. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3471-5 [PMID: 6374658]
  3. PLoS Genet. 2012;8(6):e1002778 [PMID: 22737089]
  4. J Bacteriol. 1996 Nov;178(21):6238-49 [PMID: 8892825]
  5. J Biol Chem. 2005 Apr 15;280(15):15084-96 [PMID: 15699038]
  6. J Bacteriol. 2011 Sep;193(18):4914-24 [PMID: 21784943]
  7. Mol Microbiol. 2002 Jan;43(1):119-34 [PMID: 11849541]
  8. Mol Microbiol. 2003 Oct;50(1):101-4 [PMID: 14507367]
  9. Res Microbiol. 1994 Jun-Aug;145(5-6):437-50 [PMID: 7855430]
  10. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  11. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3028-33 [PMID: 15699331]
  12. BMC Microbiol. 2022 Jan 12;22(1):22 [PMID: 35021992]
  13. Mol Microbiol. 1999 Feb;31(3):763-71 [PMID: 10048021]
  14. Environ Microbiol Rep. 2018 Oct;10(5):594-604 [PMID: 30058121]
  15. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9769-74 [PMID: 18606988]
  16. Bull World Health Organ. 2012 Mar 1;90(3):209-218A [PMID: 22461716]
  17. Infect Immun. 2014 Apr;82(4):1676-82 [PMID: 24491579]
  18. Protein Expr Purif. 2000 Oct;20(1):87-94 [PMID: 11035955]
  19. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5403-7 [PMID: 2052618]
  20. PLoS Pathog. 2020 Feb 14;16(2):e1008313 [PMID: 32059031]
  21. mBio. 2022 Jan 18;13(1):e0362121 [PMID: 35038896]
  22. Mol Microbiol. 2014 Jun;92(5):921-30 [PMID: 24698180]
  23. BMC Microbiol. 2012 May 22;12:63 [PMID: 22545862]
  24. J Bacteriol. 1999 Jul;181(14):4250-6 [PMID: 10400582]
  25. J Bacteriol. 2005 May;187(9):3013-9 [PMID: 15838027]
  26. Biochim Biophys Acta. 2000 Dec 1;1494(3):226-35 [PMID: 11121579]
  27. Nature. 2007 Dec 6;450(7171):883-6 [PMID: 18004304]
  28. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3129-34 [PMID: 11854465]
  29. PLoS Genet. 2021 Apr 1;17(4):e1009336 [PMID: 33793568]
  30. Future Microbiol. 2007 Jun;2(3):335-44 [PMID: 17661707]
  31. Mol Cell Proteomics. 2018 Oct;17(10):1937-1947 [PMID: 30038032]
  32. Science. 1996 Jun 28;272(5270):1910-4 [PMID: 8658163]
  33. Arch Microbiol. 2012 Jun;194(6):439-52 [PMID: 22130678]
  34. Infect Immun. 2003 Oct;71(10):5583-9 [PMID: 14500477]
  35. Curr Genet. 2016 May;62(2):255-60 [PMID: 26545759]
  36. Microb Pathog. 2020 Jul;144:104197 [PMID: 32283260]
  37. J Bacteriol. 2006 Apr;188(7):2625-35 [PMID: 16547050]
  38. Microb Pathog. 2020 Oct;147:104443 [PMID: 32777352]
  39. mBio. 2016 Dec 6;7(6): [PMID: 27923919]
  40. mSphere. 2019 Nov 27;4(6): [PMID: 31776240]
  41. Cell Mol Life Sci. 2020 Apr;77(7):1319-1343 [PMID: 31612240]
  42. Cell. 2016 Sep 22;167(1):99-110.e12 [PMID: 27616061]
  43. J Biol Chem. 2006 Nov 17;281(46):34775-84 [PMID: 16971386]

MeSH Term

Animals
Humans
Mice
Vibrio cholerae
Quorum Sensing
Virulence
Cholera
Gene Expression Regulation, Bacterial
Bacterial Proteins

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0virulenceexpressionQSLuxTsensingregulatorsmallintestinemechanismsnewdirectlyrevealedcellupregulatedsignalsnovelcontributesquorumwaterbornebacteriumprimarilyinfectshumancausescholerafatalityQuorumnegativelyregulatesgeneHoweverprimaryassociatedremainundeterminedinvestigationidentifiedTetRfamilyincreasesinhibitingHapRmastersuppressescascadeincreased48-foldinfantmiceLuria-BertanibrothΔmutantstrainsubstantialdefectcolonizingabilityintestineslowdensitiesleveldeletionsuggestingcansuppresstranscriptionelectrophoreticmobilityshiftanalysisbindspromoterregionFurthermoretwo-componentsystemArcB/ArcAresponseschangesoxygenlevelsresponsehost'sintestine'sanaerobicconclusionresearchrevealsdensity-mediatedregulationpathwayunderstandingcomplexassociationevidencefurnishesinsightsfuturestudiespathogenicArcAVibriocholeraehapRluxT

Similar Articles

Cited By