Antibacterial Activity of Essential Oils Combinations based on Thymus broussonnetii, and Their Synergism with some Antibiotics.

Oumaima Amassmoud, Imane Abbad, Marcello Iriti, Lahcen Hassani, Noureddine Mezrioui, Abdelaziz Abbad
Author Information
  1. Oumaima Amassmoud: Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, (Labeled Research Unit‑CNRST N°4), Cadi Ayyad University, Marrakech, Morocco.
  2. Imane Abbad: Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco.
  3. Marcello Iriti: Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, 20142, Milan, Italy. marcello.iriti@unimi.it. ORCID
  4. Lahcen Hassani: Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, (Labeled Research Unit‑CNRST N°4), Cadi Ayyad University, Marrakech, Morocco.
  5. Noureddine Mezrioui: Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, (Labeled Research Unit‑CNRST N°4), Cadi Ayyad University, Marrakech, Morocco.
  6. Abdelaziz Abbad: Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, (Labeled Research Unit‑CNRST N°4), Cadi Ayyad University, Marrakech, Morocco.

Abstract

The present study aimed to evaluate the antibacterial activity of the essential oil (EO) of Moroccan endemic Thymus broussonnetii alone, and in combination with EOs obtained from selected medicinal plants, namely Myrtus communis, Artemisia herba alba, Thymus pallidus, Thymus satureioides, Teucrium polium, and Rosmarinus officinalis. The synergistic interactions between the most effective combinations based on T. broussonnetii EO with two conventional antibiotics (streptomycin and ciprofloxacin) were also investigated. T. broussonnetii EO possessed a higher inhibitory activity against tested pathogenic bacteria with inhibition zone diameter (IZ) ranging from 21.61 ± 0.03 to 40.09 ± 0.02 mm, and MIC values between 0.140 mg/mL and 0.280 mg/mL. M. communis, A. herba alba, T. pallidus, T. satureioides, T. polium, and R. officinalis EOs showed moderate to weak antibacterial activity. Among tested EO mixtures, the highest synergistic antibacterial effect was recorded with the EO combination of T. broussonnetii and T. pallidus against S. aureus, E. coli, and S. enterica (FICI = 0.258). This EO combination was also the most effective mixture to synergistically enhance the antibacterial activity of the two antibiotics with up to a 128-fold increase, particularly against the gram-negative E. coli. These findings suggest that T. broussonnetii EO may be an interesting source of natural antimicrobials, for use in combination therapies with other plant EOs, and with conventional antimicrobial drugs to tackle the emergence of multidrug-resistant bacteria.

References

  1. Int J Food Microbiol. 2012 Mar 15;154(3):145-51 [PMID: 22273461]
  2. Phytomedicine. 2012 Mar 15;19(5):464-71 [PMID: 22257599]
  3. Phytomedicine. 2010 Nov;17(13):1057-60 [PMID: 20554185]
  4. Appl Microbiol Biotechnol. 2019 Nov;103(21-22):9013-9022 [PMID: 31637496]
  5. J Food Sci. 2019 Apr;84(4):848-858 [PMID: 30866044]
  6. Phytother Res. 2022 Jan;36(1):33-52 [PMID: 34532918]
  7. Biofouling. 2020 Nov;36(10):1256-1271 [PMID: 33435734]
  8. Crit Rev Food Sci Nutr. 2022;62(7):1740-1751 [PMID: 33207954]
  9. BMC Complement Altern Med. 2016 May 04;16:124 [PMID: 27142515]
  10. BMC Public Health. 2022 Mar 17;22(1):527 [PMID: 35300650]
  11. Molecules. 2019 May 30;24(11): [PMID: 31151304]
  12. Phytother Res. 2020 Jul;34(7):1638-1649 [PMID: 32045500]
  13. Phytother Res. 2020 Mar;34(3):546-567 [PMID: 31713320]
  14. Korean J Physiol Pharmacol. 2020 Jan;24(1):27-37 [PMID: 31908572]
  15. Crit Rev Food Sci Nutr. 2020;60(18):3042-3053 [PMID: 31617738]
  16. Carbohydr Polym. 2022 Aug 1;289:119385 [PMID: 35483866]
  17. J Chromatogr. 1963 Aug;11:463-71 [PMID: 14062605]
  18. Food Sci Nutr. 2019 May 29;7(7):2312-2318 [PMID: 31367359]
  19. Phytomedicine. 2021 Sep;90:153626 [PMID: 34301463]
  20. Plants (Basel). 2022 Mar 31;11(7): [PMID: 35406936]
  21. Phytother Res. 2021 Nov;35(11):6089-6100 [PMID: 34324240]
  22. Nat Prod Res. 2021 Dec;35(24):5964-5967 [PMID: 32815402]
  23. Sci Rep. 2021 Jan 15;11(1):1487 [PMID: 33452275]
  24. Microb Pathog. 2017 Nov;112:156-163 [PMID: 28964825]
  25. Crit Rev Food Sci Nutr. 2015;55(10):1320-3 [PMID: 24915323]
  26. Int J Mol Sci. 2020 Sep 26;21(19): [PMID: 32993130]
  27. Food Sci Technol Int. 2011 Dec;17(6):505-15 [PMID: 22049156]

MeSH Term

Anti-Bacterial Agents
Oils, Volatile
Escherichia coli
Staphylococcus aureus
Microbial Sensitivity Tests
Anti-Infective Agents
Thymus Plant
Plants, Medicinal

Chemicals

Anti-Bacterial Agents
Oils, Volatile
Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0TEObroussonnetiiantibacterialactivityThymuscombinationEOspalliduscommunisherbaalbasatureioidespoliumofficinalissynergisticeffectivebasedtwoconventionalantibioticsalsotestedbacteria0mg/mLSEcolipresentstudyaimedevaluateessentialoilMoroccanendemicaloneobtainedselectedmedicinalplantsnamelyMyrtusArtemisiaTeucriumRosmarinusinteractionscombinationsstreptomycinciprofloxacininvestigatedpossessedhigherinhibitorypathogenicinhibitionzonediameterIZranging2161 ± 0034009 ± 002mmMICvalues140280MRshowedmoderateweakAmongmixtureshighesteffectrecordedaureusentericaFICI = 0258mixturesynergisticallyenhance128-foldincreaseparticularlygram-negativefindingssuggestmayinterestingsourcenaturalantimicrobialsusetherapiesplantantimicrobialdrugstackleemergencemultidrug-resistantAntibacterialActivityEssentialOilsCombinationsSynergismAntibiotics

Similar Articles

Cited By