Comparative analysis of genome-wide transcriptional responses to continuous heat stress in Pleurotus tuoliensis.

Long Chen, Ying Luo, Jiazheng Li, Zhijun Zhang, Di Wu
Author Information
  1. Long Chen: Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China. lchen6316@gmail.com. ORCID
  2. Ying Luo: Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
  3. Jiazheng Li: Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
  4. Zhijun Zhang: Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
  5. Di Wu: Bionano Genomics, San Diego, CA, 92121, USA. dwu@bionano.com.

Abstract

Temperature plays an impactful role in mushroom cultivation. To obtain insights of transcriptomic response in macrofungi against heat stress, we performed RNA-seq analysis using Pleurotus tuoliensis mycelium cells that were treated under 32 °C and 36 °C for consecutive 96 h. By comparing the growth rate data, we found mycelium cells could maintain normal growth rate almost the same as control under 32 °C, yet halted the growths under 36 °C. In total, 2724 differential expressed genes were identified from the three pair-wise comparisons, which were classified to four clusters based on their expression patterns. We also performed gene set enrichment analysis using both GO and KEGG databases, and revealed 48, 113 and 105 enriched GO terms, and 1, 5, and 6 enriched KEGG pathways for three pair-wise comparisons accordingly. In addition, we identified 9 overlapping GO terms and 1 overlapping KEGG pathway shared by the three comparisons. Differentially expressed genes (DEGs) involved in cell communication, amino acid metabolic process, intracellular signal transduction and small molecule biosynthesis were identified in two heat stress treatments despite of the stress intensity. However, the expression of two heat shock protein genes (HSP10 and HSP60) were induced by increasing temperature. Our findings also suggested the DEGs associated with cell cycle regulation had various expression patterns under two heat stress conditions possibly due to different functions. Furthermore, 11 DEGs related to ergosterol biosynthesis were identified with similar expression trends, indicating the ergosterol levels and cell membrane composition may have a tight connection to the acquisition of thermotolerance, which warrant further investigations for deeper understanding of molecular mechanisms in fungal stress responses.

Keywords

References

  1. Front Microbiol. 2018 Oct 09;9:2368 [PMID: 30356767]
  2. Appl Environ Microbiol. 2016 Jun 30;82(14):4112-4125 [PMID: 27129961]
  3. Fungal Genet Biol. 2018 Sep;118:37-44 [PMID: 30003956]
  4. Appl Microbiol Biotechnol. 2018 Aug;102(15):6627-6636 [PMID: 29846777]
  5. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  6. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  7. Annu Rev Genet. 2004;38:203-32 [PMID: 15568976]
  8. Genes (Basel). 2022 Sep 27;13(10): [PMID: 36292631]
  9. Fungal Genet Biol. 2012 Jan;49(1):15-20 [PMID: 22202810]
  10. Elife. 2017 Dec 28;6: [PMID: 29283340]
  11. FEMS Yeast Res. 2017 Sep 1;17(6): [PMID: 28910986]
  12. PeerJ. 2020 Jun 12;8:e9336 [PMID: 32566411]
  13. Front Mol Biosci. 2020 Jun 04;7:95 [PMID: 32582761]
  14. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  15. Appl Microbiol Biotechnol. 2019 Jul;103(13):5379-5390 [PMID: 31069486]
  16. Bioinformatics. 2019 Feb 1;35(3):421-432 [PMID: 30020410]
  17. Fungal Genet Biol. 2019 Sep;130:19-30 [PMID: 31028914]
  18. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  19. Genes (Basel). 2017 Nov 21;8(11): [PMID: 29160795]
  20. Appl Environ Microbiol. 2020 Feb 18;86(5): [PMID: 31862720]
  21. Front Plant Sci. 2015 Apr 24;6:267 [PMID: 25964789]
  22. Metabolites. 2019 Nov 05;9(11): [PMID: 31694329]
  23. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  24. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  25. Cell. 1997 Oct 3;91(1):59-69 [PMID: 9335335]
  26. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  27. Front Microbiol. 2020 Jan 21;10:3148 [PMID: 32038581]
  28. Biol Cell. 1996;86(2-3):93-102 [PMID: 8893498]
  29. J Biol Chem. 1997 Sep 19;272(38):24054-63 [PMID: 9295359]
  30. Int J Mol Sci. 2018 Jul 14;19(7): [PMID: 30011913]
  31. BMC Bioinformatics. 2019 Jul 25;20(1):405 [PMID: 31345161]
  32. Front Microbiol. 2021 Jan 05;11:541967 [PMID: 33469447]
  33. FEMS Microbiol Lett. 1998 Dec 1;169(1):191-7 [PMID: 9851052]
  34. Genes Dev. 2018 Dec 1;32(23-24):1499-1513 [PMID: 30463903]
  35. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334 [PMID: 33290552]
  36. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551 [PMID: 33125081]
  37. Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576 [PMID: 34536103]
  38. Curr Opin Cell Biol. 1998 Dec;10(6):742-8 [PMID: 9914182]
  39. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  40. Appl Microbiol Biotechnol. 2010 Feb;85(5):1321-37 [PMID: 19956947]
  41. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  42. Sci Rep. 2016 May 27;6:27003 [PMID: 27229477]
  43. Mol Cell. 2008 Jul 25;31(2):287-93 [PMID: 18657510]
  44. Curr Microbiol. 2014 Nov;69(5):611-6 [PMID: 24939386]
  45. Gene. 2018 Jun 30;661:139-151 [PMID: 29605602]
  46. Protein Sci. 2019 Nov;28(11):1947-1951 [PMID: 31441146]
  47. Nature. 1996 Jan 11;379(6561):180-2 [PMID: 8538771]
  48. Biotechnol Res Int. 2015;2015:132635 [PMID: 26881084]
  49. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  50. Sci Rep. 2018 May 29;8(1):8313 [PMID: 29844491]
  51. Sci Rep. 2016 Sep 15;6:33066 [PMID: 27629112]
  52. Genes Dev. 1991 Dec;5(12B):2405-19 [PMID: 1752436]
  53. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  54. Cell Rep. 2019 Dec 24;29(13):4593-4607.e8 [PMID: 31875563]

Grants

  1. Kf2021009/Key Laboratory of Storage of Agricultural Products, China

Word Cloud

Created with Highcharts 10.0.0stressheatanalysisidentifiedexpressionPleurotustuoliensisgenesthreecomparisonsGOKEGGDEGscellbiosynthesistwoergosterolresponseperformedusingmyceliumcells32 °C36 °Cgrowthrateexpressedpair-wisepatternsalsoenrichmentenrichedterms1overlappingresponsesTemperatureplaysimpactfulrolemushroomcultivationobtaininsightstranscriptomicmacrofungiRNA-seqtreatedconsecutive96 hcomparingdatafoundmaintainnormalalmostcontrolyethaltedgrowthstotal2724differentialclassifiedfourclustersbasedgenesetdatabasesrevealed4811310556pathwaysaccordinglyaddition9pathwaysharedDifferentiallyinvolvedcommunicationaminoacidmetabolicprocessintracellularsignaltransductionsmallmoleculetreatmentsdespiteintensityHowevershockproteinHSP10HSP60inducedincreasingtemperaturefindingssuggestedassociatedcycleregulationvariousconditionspossiblyduedifferentfunctionsFurthermore11relatedsimilartrendsindicatinglevelsmembranecompositionmaytightconnectionacquisitionthermotolerancewarrantinvestigationsdeeperunderstandingmolecularmechanismsfungalComparativegenome-widetranscriptionalcontinuousDEGFungalGenefunctionHeat

Similar Articles

Cited By