Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation.

Kadhirmathiyan Velumani, Abirami Arasu, Praveen Kumar Issac, Meenakshi Sundaram Kishore Kumar, Ajay Guru, Jesu Arockiaraj
Author Information
  1. Kadhirmathiyan Velumani: Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
  2. Abirami Arasu: Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
  3. Praveen Kumar Issac: Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India. praveenkumari.sse@saveetha.com.
  4. Meenakshi Sundaram Kishore Kumar: Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
  5. Ajay Guru: Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India. ajayguru.sdc@saveetha.com.
  6. Jesu Arockiaraj: Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India. jesuaroa@srmist.edu.in.

Abstract

Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against Mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing Mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of Mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat Mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of Mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.

Keywords

References

  1. Corzo-León DE, Chora-Hernández LD, Rodríguez-Zulueta AP, Walsh TJ (2018) Diabetes mellitus as the major risk factor for mucormycosis in Mexico: epidemiology, diagnosis, and outcomes of reported cases. Med Mycol 56:29–43. https://doi.org/10.1093/MMY/MYX017 [DOI: 10.1093/MMY/MYX017]
  2. Chakrabarti A, Singh R (2014) Mucormycosis in India: unique features. Mycoses 57:85–90. https://doi.org/10.1111/myc.12243 [DOI: 10.1111/myc.12243]
  3. Skiada A, Lass-Floerl C, Klimko N, Ibrahim A, Roilides E, Petrikkos G (2018) Challenges in the diagnosis and treatment of mucormycosis. Med Mycol 56:S93–S101. https://doi.org/10.1093/mmy/myx101 [DOI: 10.1093/mmy/myx101]
  4. Petrikkos GL, Skiada A, Lortholary O, Roilides E, Walsh TJ, Kontoyiannis DP (2012) Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis 54(Suppl 1):S23-34 [DOI: 10.1093/cid/cir866]
  5. Hassan MIA, Voigt K (2019) Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors. Med Mycol 57:S245–S256 [DOI: 10.1093/mmy/myz011]
  6. Murthy RK, Gote Y, Bagchi A (2022) Localized surgical debridement for the management of orbital mucormycosis. Indian J Ophthalmol 70:649–652 [DOI: 10.4103/ijo.IJO_1635_21]
  7. Tessaro FHG, Ayala TS, Nolasco EL, Bella LM, Martins JO (2017) Insulin influences LPS-induced TNF-α and IL-6 release through distinct pathways in mouse macrophages from different compartments. Cell Physiol Biochem 42:2093–2104. https://doi.org/10.1159/000479904 [DOI: 10.1159/000479904]
  8. Mooradian AD, Reed RL, Meredith KE, Scuderi P (1991) Serum levels of tumor necrosis factor and IL-1α and IL-1β in diabetic patients. Diabetes Care 14:63–65. https://doi.org/10.2337/DIACARE.14.1.63 [DOI: 10.2337/DIACARE.14.1.63]
  9. Ohno Y, Aoki N, Nishimura A (1993) In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 77:1072–1077. https://doi.org/10.1210/JCEM.77.4.8408455 [DOI: 10.1210/JCEM.77.4.8408455]
  10. Reinhold D, Ansorge S, Schleicher ED (1996) Elevated glucose levels stimulate transforming growth factor-β1 (TGF-β1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res 28:267–270. https://doi.org/10.1055/S-2007-979789/BIB [DOI: 10.1055/S-2007-979789/BIB]
  11. Tanaka T, Narazaki M, Kishimoto T (2014) Il-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016295 [DOI: 10.1101/cshperspect.a016295]
  12. Spindler MP, Ho AM, Tridgell D, McCulloch-Olson M, Gersuk V, Ni C, Greenbaum C, Sanda S (2016) Acute hyperglycemia impairs IL-6 expression in humans. Immun Inflamm Dis 4:91–97. https://doi.org/10.1002/IID3.97 [DOI: 10.1002/IID3.97]
  13. Ferracini M, Martins JO, Campos MRM, Anger DBC, Jancar S (2010) Impaired phagocytosis by alveolar macrophages from diabetic rats is related to the deficient coupling of LTs to the FcγR signaling cascade. Mol Immunol 47:1974–1980. https://doi.org/10.1016/J.MOLIMM.2010.04.018 [DOI: 10.1016/J.MOLIMM.2010.04.018]
  14. Kumar M, Roe K, Nerurkar PV, Orillo B, Thompson KS, Verma S, Nerurkar VR (2014) Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus. J Neuroinflamm 11:1–17. https://doi.org/10.1186/1742-2094-11-80/FIGURES/8 [DOI: 10.1186/1742-2094-11-80/FIGURES/8]
  15. Martinez N, Ketheesan N, Martens GW, West K, Lien E, Kornfeld H (2016) Defects in early cell recruitment contribute to the increased susceptibility to respiratory Klebsiella pneumoniae infection in diabetic mice. Microbes Infect 18:649–655. https://doi.org/10.1016/J.MICINF.2016.05.007 [DOI: 10.1016/J.MICINF.2016.05.007]
  16. Gupta S, Maratha A, Siednienko J, Natarajan A, Gajanayake T, Hoashi S, Miggin S (2017) Analysis of inflammatory cytokine and TLR expression levels in Type 2 Diabetes with complications. Sci Rep. https://doi.org/10.1038/S41598-017-07230-8 [DOI: 10.1038/S41598-017-07230-8]
  17. Chao WC, Yen CL, Wu YH, Chen SY, Hsieh CY, Chang TC, Ou HY, Shieh CC (2015) Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection. Microbes Infect 17:195–204. https://doi.org/10.1016/J.MICINF.2014.11.009 [DOI: 10.1016/J.MICINF.2014.11.009]
  18. Perner A, Nielsen SE, Rask-Madsen J (2003) High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med 29:642–645. https://doi.org/10.1007/s00134-002-1628-4 [DOI: 10.1007/s00134-002-1628-4]
  19. Hair PS, Echague CG, Rohn RD, Krishna NK, Nyalwidhe JO, Cunnion KM (2012) Hyperglycemic conditions inhibit C3-mediated immunologic control of Staphylococcus aureus. J Transl Med 10:35. https://doi.org/10.1186/1479-5876-10-35 [DOI: 10.1186/1479-5876-10-35]
  20. Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K (2013) High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett 587:2241–2246. https://doi.org/10.1016/j.febslet.2013.05.053 [DOI: 10.1016/j.febslet.2013.05.053]
  21. Restrepo BI, Twahirwa M, Rahbar MH, Schlesinger LS (2014) Phagocytosis via complement or Fc-gamma receptors is compromised in monocytes from type 2 diabetes patients with chronic hyperglycemia. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0092977 [DOI: 10.1371/JOURNAL.PONE.0092977]
  22. Pavlou S, Lindsay J, Ingram R, Xu H, Chen M (2018) Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol 19:24. https://doi.org/10.1186/s12865-018-0261-0 [DOI: 10.1186/s12865-018-0261-0]
  23. Mauriello CT, Hair PS, Rohn RD, Rister NS, Krishna NK, Cunnion KM (2014) Hyperglycemia inhibits complement-mediated immunological control of S. aureus in a rat model of peritonitis. J Diabetes Res. https://doi.org/10.1155/2014/762051 [DOI: 10.1155/2014/762051]
  24. Gould AB (2009) Fungi: plant pathogenic. In: Encyclopedia of microbiology. pp 457–477. https://doi.org/10.1016/B978-012373944-5.00347-3
  25. Guarro J, Gené J, Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12:454–500. https://doi.org/10.1128/CMR.12.3.454/ASSET/46BE0CF9-EC50-4FF1-9070-976386AB18C3/ASSETS/GRAPHIC/CM0390024T10.JPEG [DOI: 10.1128/CMR.12.3.454/ASSET/46BE0CF9-EC50-4FF1-9070-976386AB18C3/ASSETS/GRAPHIC/CM0390024T10.JPEG]
  26. Mengji AK, Yaga US, Gollamudi N, Prakash B, Rajashekar E (2016) Mucormycosis in a surgical defect masquerading as osteomyelitis: a case report and review of literature. PAMJ 2316:23. https://doi.org/10.11604/PAMJ.2016.23.16.8394 [DOI: 10.11604/PAMJ.2016.23.16.8394]
  27. Manji F, Lam JC, Meatherall BL, Church D, Missaghi B (2019) Severe facial necrosis in a type 1 diabetic patient secondary to mucormycosis masquerading as an internal maxillary artery occlusion: a case report. BMC Infect Dis. https://doi.org/10.1186/S12879-019-3822-9 [DOI: 10.1186/S12879-019-3822-9]
  28. Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13:236. https://doi.org/10.1128/CMR.13.2.236-301.2000 [DOI: 10.1128/CMR.13.2.236-301.2000]
  29. Klimko N, Khostelidi S, Shadrivova O, Volkova A, Popova M, Uspenskaya O, Shneyder T, Bogomolova T, Ignatyeva S, Zubarovskaya L, Afanasyev B (2019) Contrasts between mucormycosis and aspergillosis in oncohematological patients. Med Mycol 57:S138–S144. https://doi.org/10.1093/MMY/MYY116.000 [DOI: 10.1093/MMY/MYY116.000]
  30. Choi H, Lee H, Jeon K, Suh GY, Shin S, Kim HK, Kim K, Jeong D, Kim H (2019) Factors affecting surgical resection and treatment outcomes in patients with pulmonary mucormycosis. J Thorac Dis 11:892. https://doi.org/10.21037/JTD.2019.01.75 [DOI: 10.21037/JTD.2019.01.75]
  31. Kaur H, Ghosh A, Rudramurthy SM, Chakrabarti A (2018) Gastrointestinal mucormycosis in apparently immunocompetent hosts—a review. Mycoses 61:898–908. https://doi.org/10.1111/MYC.12798 [DOI: 10.1111/MYC.12798]
  32. Rammaert B, Lanternier F, Zahar JR, Dannaoui E, Bougnoux ME, Lecuit M, Lortholary O (2012) Healthcare-associated mucormycosis. Clin Infect Dis 54:S44–S54. https://doi.org/10.1093/CID/CIR867 [DOI: 10.1093/CID/CIR867]
  33. Castrejón-Pérez AD, Miranda I, Welsh O, Welsh EC, Ocampo-Candiani J (2017) Cutaneous mucormycosis. An Bras Dermatol 92:304. https://doi.org/10.1590/ABD1806-4841.20176614 [DOI: 10.1590/ABD1806-4841.20176614]
  34. Marchesi F, Pimpinelli F, Di Domenico EG, Renzi D, Gallo MT, Regazzo G, Rizzo MG, Gumenyuk S, Toma L, Marino M, Cordone I, Cantonetti M, Liberati AM, Montanaro M, Ceribelli A, Prignano G, Palombi F, Romano A, Papa E, Pisani F, Spadea A, Arcese W, Ensoli F, Mengarelli A (2019) Association between CMV and invasive fungal infections after autologous stem cell transplant in lymphoproliferative malignancies: opportunistic partnership or cause–effect relationship? Int J Mol Sci 20:1373. https://doi.org/10.3390/IJMS20061373 [DOI: 10.3390/IJMS20061373]
  35. Cliff ERS, Reynolds G, Grigg A (2023) Disseminated invasive mucormycosis infection following autologous stem cell transplantation for diffuse large B-cell lymphoma. Clin Hematol Int. https://doi.org/10.1007/S44228-023-00031-Z [DOI: 10.1007/S44228-023-00031-Z]
  36. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP (2012) Pathogenesis of mucormycosis. Clin Infect Dis Off Publ Infect Dis Soc Am 54:S16. https://doi.org/10.1093/CID/CIR865 [DOI: 10.1093/CID/CIR865]
  37. Bullen JJ, Rogers HJ, Spalding PB, Ward CG (2006) Natural resistance, iron and infection: a challenge for clinical medicine. J Med Microbiol 55:251–258. https://doi.org/10.1099/JMM.0.46386-0/CITE/REFWORKS [DOI: 10.1099/JMM.0.46386-0/CITE/REFWORKS]
  38. Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C, Sanchis M, Capilla J, Nicolás FE, Garre V (2018) Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci Rep 81(8):1–13. https://doi.org/10.1038/s41598-018-26051-x [DOI: 10.1038/s41598-018-26051-x]
  39. Schwartze VU, Winter S, Shelest E, Marcet-Houben M, Horn F, Wehner S, Linde J, Valiante V, Sammeth M, Riege K, Nowrousian M, Kaerger K, Jacobsen ID, Marz M, Brakhage AA, Gabaldón T, Böcker S, Voigt K (2014) Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (mucoromycotina). PLoS Genet 10:e1004496. https://doi.org/10.1371/JOURNAL.PGEN.1004496 [DOI: 10.1371/JOURNAL.PGEN.1004496]
  40. Ibrahim AS, Gebremariam T, Lin L, Luo G, Husseiny MI, Skory CD, Fu Y, French SW, Edwards JE, Spellberg B (2010) The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol Microbiol 77:587–604. https://doi.org/10.1111/J.1365-2958.2010.07234.X [DOI: 10.1111/J.1365-2958.2010.07234.X]
  41. Shirazi F, Kontoyiannis DP, Ibrahim AS (2015) Iron starvation induces apoptosis in Rhizopus oryzae in vitro. Virulence 6:121–126. https://doi.org/10.1080/21505594.2015.1009732/SUPPL_FILE/KVIR_A_1009732_SM0948.ZIP [DOI: 10.1080/21505594.2015.1009732/SUPPL_FILE/KVIR_A_1009732_SM0948.ZIP]
  42. Carroll CS, Grieve CL, Murugathasan I, Bennet AJ, Czekster CM, Lui H, Naismith J, Moore MM (2017) The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. Int J Biochem Cell Biol 89:136–146. https://doi.org/10.1016/J.BIOCEL.2017.06.005 [DOI: 10.1016/J.BIOCEL.2017.06.005]
  43. Liu M, Lin L, Gebremariam T, Luo G, Skory CD, French SW, Chou TF, Edwards JE, Ibrahim AS (2015) Fob1 and Fob2 proteins are virulence determinants of Rhizopus oryzae via facilitating iron uptake from ferrioxamine. PLoS Pathog 11:e1004842. https://doi.org/10.1371/JOURNAL.PPAT.1004842 [DOI: 10.1371/JOURNAL.PPAT.1004842]
  44. Ibrahim AS, Gebermariam T, Fu Y, Lin L, Husseiny MI, French SW, Schwartz J, Skory CD, Edwards JE, Spellberg BJ (2007) The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J Clin Investig 117:2649–2657. https://doi.org/10.1172/JCI32338 [DOI: 10.1172/JCI32338]
  45. Schwarz P, Cornely OA, Dannaoui E (2019) Antifungal combinations in Mucorales: a microbiological perspective. Mycoses 62:746–760. https://doi.org/10.1111/MYC.12909 [DOI: 10.1111/MYC.12909]
  46. Kousser C, Clark C, Sherrington S, Voelz K, Hall RA (2019) Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep 91(9):1–14. https://doi.org/10.1038/s41598-019-42175-0 [DOI: 10.1038/s41598-019-42175-0]
  47. Santos R, Buisson N, Knight S, Dancis A, Camadro J-M, Lesuisse E (2003) Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149:579–588. https://doi.org/10.1099/mic.0.26108-0 [DOI: 10.1099/mic.0.26108-0]
  48. Ma L-J, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE, Corrochano LM, Engels R, Fu J, Hansberg W, Kim J-M, Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D, O’Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero J, Ruiz-Herrera J, Shen Y-Q, Zeng Q, Galagan J, Birren BW, Cuomo CA, Wickes BL (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5:e1000549. https://doi.org/10.1371/journal.pgen.1000549 [DOI: 10.1371/journal.pgen.1000549]
  49. Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H (2008) SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 70:27–43. https://doi.org/10.1111/j.1365-2958.2008.06376.x [DOI: 10.1111/j.1365-2958.2008.06376.x]
  50. Sae-Leaw T, Karnjanapratum S, O’Callaghan YC, O’Keeffe MB, FitzGerald RJ, O’Brien NM, Benjakul S (2017) Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin. J Food Biochem 41:e12350. https://doi.org/10.1111/JFBC.12350 [DOI: 10.1111/JFBC.12350]
  51. Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S (2022) Valorization of fish byproducts: sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 21:1803–1842. https://doi.org/10.1111/1541-4337.12917 [DOI: 10.1111/1541-4337.12917]
  52. Awuchi CG, Morya S, Dendegh TA, Okpala COR, Korzeniowska M (2022) Nanoencapsulation of food bioactive constituents and its associated processes: a revisit. Bioresour Technol Rep 19:101088. https://doi.org/10.1016/J.BITEB.2022.101088 [DOI: 10.1016/J.BITEB.2022.101088]
  53. Balami S, Sharma A, Karn R (2019) Significance of nutritional value of fish for human health. Malays J Halal Res 2:32–34. https://doi.org/10.2478/MJHR-2019-0012 [DOI: 10.2478/MJHR-2019-0012]
  54. Aucoin M, Cooley K, Knee C, Fritz H, Balneaves LG, Breau R, Fergusson D, Skidmore B, Wong R, Seely D (2017) Fish-derived omega-3 fatty acids and prostate cancer: a systematic review. Integr Cancer Ther 16:32. https://doi.org/10.1177/1534735416656052 [DOI: 10.1177/1534735416656052]
  55. Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411. https://doi.org/10.1007/S00726-013-1500-6/TABLES/2 [DOI: 10.1007/S00726-013-1500-6/TABLES/2]
  56. Prabhakar PK, Vatsa S, Srivastav PP, Pathak SS (2020) A comprehensive review on freshness of fish and assessment: analytical methods and recent innovations. Food Res Int 133:109157. https://doi.org/10.1016/J.FOODRES.2020.109157 [DOI: 10.1016/J.FOODRES.2020.109157]
  57. Je JY, Qian ZJ, Byun HG, Kim SK (2007) Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem 42:840–846. https://doi.org/10.1016/J.PROCBIO.2007.02.006 [DOI: 10.1016/J.PROCBIO.2007.02.006]
  58. Heffernan S, Giblin L, O’Brien N (2021) Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem 359:129852. https://doi.org/10.1016/j.foodchem.2021.129852 [DOI: 10.1016/j.foodchem.2021.129852]
  59. Jiang Z, Zhang H, Bian X, Li J, Li J, Zhang H (2018) Insight into the binding of ACE-inhibitory peptides to angiotensin-converting enzyme: a molecular simulation. Mol Simul 45:215–222. https://doi.org/10.1080/08927022.2018.1557327 [DOI: 10.1080/08927022.2018.1557327]
  60. Kundam DN, Acham IO, Girgih AT (2018) Bioactive compounds in fish and their health benefits. Asian Food Sci J 4:1–14. https://doi.org/10.9734/AFSJ/2018/41803 [DOI: 10.9734/AFSJ/2018/41803]
  61. Oh JY, Je JG, Lee HG, Kim EA, Kang SI, Lee JS, Jeon YJ (2020) Anti-hypertensive activity of novel peptides identified from olive flounder (Paralichthys olivaceus) Surimi. Foods (Basel Switz). https://doi.org/10.3390/FOODS9050647
  62. Gao R, Shu W, Shen Y, Sun Q, Bai F, Wang J, Li D, Li Y, Jin W, Yuan L (2020) Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway. J Funct Foods 72:104044. https://doi.org/10.1016/j.jff.2020.104044 [DOI: 10.1016/j.jff.2020.104044]
  63. da Alfaro AT, Balbinot E, Weber CI, Tonial IB, Machado-Lunkes A (2015) Fish gelatin: characteristics, functional properties, applications and future potentials. Food Eng Rev 7:33–44. https://doi.org/10.1007/s12393-014-9096-5 [DOI: 10.1007/s12393-014-9096-5]
  64. Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F (2021) A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr 61:1027–1037. https://doi.org/10.1080/10408398.2020.1751585 [DOI: 10.1080/10408398.2020.1751585]
  65. Rizzo C, Genovese G, Morabito M, Faggio C, Pagano M, Spanò A, Zammuto V, Minicante SA, Manghisi A, Cigala RM, Crea F, Marino F, Gugliandolo C (2017) Potential antibacterial activity of marine macroalgae against pathogens relevant for aquaculture and human health. J Pure Appl Microbiol 11:1695–1706. https://doi.org/10.22207/JPAM.11.4.07 [DOI: 10.22207/JPAM.11.4.07]
  66. Ryan JT, Ross RP, Bolton D, Fitzgerald GF, Stanton C (2011) Bioactive peptides from muscle sources: meat and fish. Nutrients 3:765–791. https://doi.org/10.3390/nu3090765 [DOI: 10.3390/nu3090765]
  67. Srivastava RN, Ara Z, Waliullah S, Singh A, Raj S, Mahdi AA, Garg RK, Roy R (2022) Taurine is a future biomolecule for potential health benefits: a review. J Metab Syst Biol 5:1–13. https://doi.org/10.5897/JMSBS2021.0026 [DOI: 10.5897/JMSBS2021.0026]
  68. Tanaka Y, Ikeda T, Ogawa H, Kamisako T (2020) Ezetimibe markedly reduces hepatic triglycerides and cholesterol in rats fed on fish oil by increasing the expression of cholesterol efflux transporters. J Pharmacol Exp Ther 374:175–183. https://doi.org/10.1124/JPET.120.265660 [DOI: 10.1124/JPET.120.265660]
  69. Ghasemi Fard S, Wang F, Sinclair AJ, Elliott G, Turchini GM (2019) How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr 59:1684–1727. https://doi.org/10.1080/10408398.2018.1425978 [DOI: 10.1080/10408398.2018.1425978]
  70. Hamed I, Özogul F, Özogul Y, Regenstein JM (2015) Marine bioactive compounds and their health benefits: a review. Compr Rev Food Sci Food Saf 14:446–465. https://doi.org/10.1111/1541-4337.12136 [DOI: 10.1111/1541-4337.12136]
  71. Schaffer S, Kim HW (2018) Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 26:225–241. https://doi.org/10.4062/biomolther.2017.251 [DOI: 10.4062/biomolther.2017.251]
  72. Lin Z, Chen R, Jiang Y, Xia Y, Niu Y, Wang C, Liu C, Chen C, Ge Y, Wang W, Yin G, Cai J, Clement V, Xu X, Chen B, Chen H, Kan H (2019) Cardiovascular benefits of fish-oil supplementation against fine particulate air pollution in China. J Am Coll Cardiol 73:2076–2085. https://doi.org/10.1016/j.jacc.2018.12.093 [DOI: 10.1016/j.jacc.2018.12.093]
  73. Tørris C, Småstuen MC, Molin M (2018) Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients. https://doi.org/10.3390/nu10070952 [DOI: 10.3390/nu10070952]
  74. Larsen R, Eilertsen K-E, Elvevoll EO (2011) Health benefits of marine foods and ingredients. Biotechnol Adv 29:508–518. https://doi.org/10.1016/j.biotechadv.2011.05.017 [DOI: 10.1016/j.biotechadv.2011.05.017]
  75. Reimers A, Ljung H (2019) The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Ther Adv Psychopharmacol 9:2045125319858901. https://doi.org/10.1177/2045125319858901 [DOI: 10.1177/2045125319858901]
  76. Taşbozan O, Gökçe MA (2017) Chapter 8. In: Catala A (ed) Fatty acids in fish. IntechOpen, Rijeka. https://doi.org/10.5772/68048
  77. Gormley RT (2013) Fish as a functional food: some issues and outcomes. SeaHealth (9A)
  78. Zheng J-S, Hu X-J, Zhao Y-M, Yang J, Li D (2013) Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 346:f3706. https://doi.org/10.1136/bmj.f3706 [DOI: 10.1136/bmj.f3706]
  79. AlAmmar WA, Albeesh FH, Ibrahim LM, Algindan YY, Yamani LZ, Khattab RY (2021) Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: a systematic review. Nutr Neurosci 24:569–579. https://doi.org/10.1080/1028415X.2019.1659560 [DOI: 10.1080/1028415X.2019.1659560]
  80. Gallego R, Bueno M, Herrero M (2019) Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae—an update, Trends. Anal Chem 116:198–213. https://doi.org/10.1016/j.trac.2019.04.030 [DOI: 10.1016/j.trac.2019.04.030]
  81. Nursyifa Fadiyah N, Megawati G, Erlangga Luftimas D (2022) Potential of omega 3 supplementation for coronavirus disease 2019 (COVID-19): a scoping review. Int J Gen Med 15:3915–3922. https://doi.org/10.2147/IJGM.S357460 [DOI: 10.2147/IJGM.S357460]
  82. Hsu M-C, Tung C-Y, Chen H-E (2018) Omega-3 polyunsaturated fatty acid supplementation in prevention and treatment of maternal depression: putative mechanism and recommendation. J Affect Disord 238:47–61. https://doi.org/10.1016/j.jad.2018.05.018 [DOI: 10.1016/j.jad.2018.05.018]
  83. Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333. https://doi.org/10.3390/md9030319 [DOI: 10.3390/md9030319]
  84. Takarina ND, Fanani AA (2017) Characterization of chitin and chitosan synthesized from red snapper (Lutjanus sp.) scale’s waste. AIP Conf Proc 1862:30108. https://doi.org/10.1063/1.4991212 [DOI: 10.1063/1.4991212]
  85. Dong L, Wichers HJ, Govers C (2019) Beneficial health effects of chitin and chitosan. In: Chitin and chitosan. pp 145–167. https://doi.org/10.1002/9781119450467.ch6
  86. Akbari-Alavijeh S, Shaddel R, Jafari SM (2020) Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocoll 105:105774. https://doi.org/10.1016/j.foodhyd.2020.105774 [DOI: 10.1016/j.foodhyd.2020.105774]
  87. Lee KH, Lee J-S, Kim ES, Lee HG (2019) Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT 101:138–144. https://doi.org/10.1016/j.lwt.2018.10.072 [DOI: 10.1016/j.lwt.2018.10.072]
  88. Li B, Elango J, Wu W (2020) Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. Appl Sci. https://doi.org/10.3390/app10144719 [DOI: 10.3390/app10144719]
  89. Faustino JF, Ribeiro-Silva A, Dalto RF, de Souza MM, Furtado JMF, de Rocha GM, Alves M, Rocha EM (2016) Vitamin A and the eye: an old tale for modern times. Arq Bras Oftalmol 79:56–61. https://doi.org/10.5935/0004-2749.20160018 [DOI: 10.5935/0004-2749.20160018]
  90. Najafian L, Babji AS (2012) A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides 33:178–185. https://doi.org/10.1016/j.peptides.2011.11.013 [DOI: 10.1016/j.peptides.2011.11.013]
  91. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757. https://doi.org/10.1161/01.cir.0000038493.65177.94 [DOI: 10.1161/01.cir.0000038493.65177.94]
  92. Aluko RE (2012) Functional foods and nutraceuticals. https://doi.org/10.1007/978-1-4614-3480-1
  93. Mogobe O, Mosepele K, Masamba WRL (2015) Essential mineral content of common fish species in Chanoga, Okavango Delta, Botswana, Afr. J Food Sci 9:480–486. https://doi.org/10.5897/AJFS2015.1307 [DOI: 10.5897/AJFS2015.1307]
  94. Venugopal V (2018) In: Mérillon J-M, Ramawat KG (eds) Nutrients and nutraceuticals from seafood BT—bioactive molecules in food. Springer, Cham, pp 1–45. https://doi.org/10.1007/978-3-319-54528-8_36-2
  95. Liu E, Pimpin L, Shulkin M, Kranz S, Duggan CP, Mozaffarian D, Fawzi WW (2018) Effect of zinc supplementation on growth outcomes in children under 5 years of age. Nutrients. https://doi.org/10.3390/nu10030377 [DOI: 10.3390/nu10030377]
  96. do Marreiro DN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, de Oliveira ARS (2017) Zinc and oxidative stress: current mechanisms. Antioxidants (Basel Switz). https://doi.org/10.3390/antiox6020024 [DOI: 10.3390/antiox6020024]
  97. Sobolev N, Aksenov A, Sorokina T, Chashchin V, Ellingsen DG, Nieboer E, Varakina Y, Plakhina E, Onuchina A, Thomassen MS, Thomassen Y (2020) Iodine and bromine in fish consumed by indigenous peoples of the Russian Arctic. Sci Rep 10:5451. https://doi.org/10.1038/s41598-020-62242-1 [DOI: 10.1038/s41598-020-62242-1]
  98. Terzioğlu P, Öğüt H, Kalemtaş A (2018) Natural calcium phosphates from fish bones and their potential biomedical applications. Mater Sci Eng C 91:899–911. https://doi.org/10.1016/j.msec.2018.06.010 [DOI: 10.1016/j.msec.2018.06.010]
  99. Chen X, Yi Y, Bian C, You X, Shi Q (2020) Putative antimicrobial peptides in fish: using zebrafish as a representative. Protein Pept Lett 27:1059–1067. https://doi.org/10.2174/0929866527666200517104610 [DOI: 10.2174/0929866527666200517104610]
  100. Chee PY, Mang M, Lau ES, Tan LT-H, He Y-W, Lee W-L, Pusparajah P, Chan K-G, Lee L-H, Goh B-H (2019) Epinecidin-1, an antimicrobial peptide derived from grouper (Epinephelus coioides): pharmacological activities and applications. Front Microbiol 10:2631. https://doi.org/10.3389/fmicb.2019.02631 [DOI: 10.3389/fmicb.2019.02631]
  101. Praveen Kumar I, Sarkar P, Stefi Raju V, Manikandan V, Guru A, Arshad A, Elumalai P, Arockiaraj J (2020) Pathogenicity and pathobiology of epizootic ulcerative syndrome (EUS) causing fungus Aphanomyces invadans and its immunological response in fish. Rev Fish Sci Aquacult 28:358–375. https://doi.org/10.1080/23308249.2020.1753167 [DOI: 10.1080/23308249.2020.1753167]
  102. Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R (2018) Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microb Pathog 114:50–56. https://doi.org/10.1016/j.micpath.2017.11.039 [DOI: 10.1016/j.micpath.2017.11.039]
  103. Masso-Silva JA, Diamond G (2014) Antimicrobial peptides from fish. Pharmaceuticals 7:265–310. https://doi.org/10.3390/ph7030265 [DOI: 10.3390/ph7030265]
  104. Maier VH, Dorn KV, Gudmundsdottir BK, Gudmundsson GH (2008) Characterisation of cathelicidin gene family members in divergent fish species. Mol Immunol 45:3723–3730. https://doi.org/10.1016/j.molimm.2008.06.002 [DOI: 10.1016/j.molimm.2008.06.002]
  105. Casadei E, Bird S, González Vecino JL, Wadsworth S, Secombes CJ (2013) The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 34:529–537. https://doi.org/10.1016/j.fsi.2012.11.027 [DOI: 10.1016/j.fsi.2012.11.027]
  106. Broekman DC, Zenz A, Gudmundsdottir BK, Lohner K, Maier VH, Gudmundsson GH (2011) Functional characterization of cod Cath, the mature cathelicidin antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides 32:2044–2051. https://doi.org/10.1016/j.peptides.2011.09.012 [DOI: 10.1016/j.peptides.2011.09.012]
  107. Chang CI, Zhang YA, Zou J, Nie P, Secombes CJ (2006) Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Antimicrob Agents Chemother 50:185–195. https://doi.org/10.1128/AAC.50.1.185-195.2006 [DOI: 10.1128/AAC.50.1.185-195.2006]
  108. Lu XJ, Chen J, Huang ZA, Shi YH, Lu JN (2011) Identification and characterization of a novel cathelicidin from Ayu, Plecoglossus altivelis. Fish Shellfish Immunol 31:52–57. https://doi.org/10.1016/j.fsi.2011.03.005 [DOI: 10.1016/j.fsi.2011.03.005]
  109. Kapralova KH, Gudbrandsson J, Reynisdottir S, Santos CB, Baltanás VC, Maier VH, Snorrason SS, Palsson A (2013) Differentiation at the MHCIIα and Cath2 loci in sympatric Salvelinus alpinus resource morphs in Lake Thingvallavatn. PLoS ONE. https://doi.org/10.1371/journal.pone.0069402 [DOI: 10.1371/journal.pone.0069402]
  110. Chen Y, Gong Q, Song M, Lai J, Sun J, Liu Y (2019) Identification and characterization of three novel antimicrobial peptides from Acipenser dabryanus. Fish Shellfish Immunol 88:207–216. https://doi.org/10.1016/j.fsi.2019.02.050 [DOI: 10.1016/j.fsi.2019.02.050]
  111. Han P, Tian G, Gao W, Yuan H, Deng D, Zhang W, Xu Q (2019) Expression analysis of cathelicidin and NK-lysin in Dabry’s sturgeon (Acipenser dabryanus). J Appl Ichthyol 35:825–830. https://doi.org/10.1111/jai.13922 [DOI: 10.1111/jai.13922]
  112. Acosta J, Roa F, González-Chavarría I, Astuya A, Maura R, Montesino R, Muñoz C, Camacho F, Saavedra P, Valenzuela A, Sánchez O, Toledo JR (2019) In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish Shellfish Immunol 88:587–594. https://doi.org/10.1016/j.fsi.2019.03.034 [DOI: 10.1016/j.fsi.2019.03.034]
  113. Alesci A, Capillo G, Mokhtar DM, Fumia A, D’Angelo R, Lo Cascio P, Albano M, Guerrera MC, Sayed RKA, Spanò N, Pergolizzi S, Lauriano ER (2022) Expression of antimicrobic peptide piscidin1 in gills mast cells of giant mudskipper Periophthalmodon schlosseri (Pallas, 1770). Int J Mol Sci 23:1–12. https://doi.org/10.3390/ijms232213707 [DOI: 10.3390/ijms232213707]
  114. Serna-Duque JA, Cuesta A, Sánchez-Ferrer Á, Esteban MÁ (2022) Two duplicated piscidin genes from gilthead seabream (Sparus aurata) with different roles in vitro and in vivo. Fish Shellfish Immunol 127:730–739. https://doi.org/10.1016/J.FSI.2022.07.013 [DOI: 10.1016/J.FSI.2022.07.013]
  115. Stefi Raju V, Sarkar P, Pachaiappan R, Paray BA, Al-Sadoon MK, Arockiaraj J (2020) Defence involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. Fish Shellfish Immunol 99:368–378. https://doi.org/10.1016/j.fsi.2020.02.027 [DOI: 10.1016/j.fsi.2020.02.027]
  116. Zahran E, Risha E, Elbahnaswy S, Mahgoub HA, El-Moaty AA (2019) Tilapia piscidin 4 (TP4) enhances immune response, antioxidant activity, intestinal health and protection against Streptococcus iniae infection in Nile tilapia. Aquaculture 513:734451. https://doi.org/10.1016/j.aquaculture.2019.734451 [DOI: 10.1016/j.aquaculture.2019.734451]
  117. Barroso C, Carvalho P, Carvalho C, Santarém N, Gonçalves JFM, Rodrigues PNS, Neves JV (2020) The diverse piscidin repertoire of the European sea bass (Dicentrarchus labrax): molecular characterization and antimicrobial activities. Int J Mol Sci 21:1–20. https://doi.org/10.3390/ijms21134613 [DOI: 10.3390/ijms21134613]
  118. Huang X, Hu B, Yang X, Gong L, Tan J, Deng L (2019) The putative mature peptide of piscidin-1 modulates global transcriptional profile and proliferation of splenic lymphocytes in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol 86:1035–1043. https://doi.org/10.1016/j.fsi.2018.12.045 [DOI: 10.1016/j.fsi.2018.12.045]
  119. Huo HJ, Yang TZ, Bin Gao C, Cao M, Xue T, Fu Q, Li C (2022) Molecular characterization, antibacterial activity and mechanism analyzation of three different piscidins from black rockfish, Sebastes schlegelii. Dev Comp Immunol. https://doi.org/10.1016/J.DCI.2022.104394 [DOI: 10.1016/J.DCI.2022.104394]
  120. Duan Y, Ouyang J, Mo G, Hao W, Zhang P, Yang H, Liu X, Wang R, Cao B, Wang Y, Yu H (2022) Defensing role of novel piscidins from largemouth bass (Micropterus salmoides) with evidence of bactericidal activities and inducible expressional delineation. Microbiol Res 256:126953. https://doi.org/10.1016/J.MICRES.2021.126953 [DOI: 10.1016/J.MICRES.2021.126953]
  121. Zheng L, Qiu J, Liu H, Shi H, Chi C, Pan Y (2021) Molecular characterization and antiparasitic activity analysis of a novel piscidin 5-like type 4 from Larimichthys crocea. Mol Immunol 129:12–20. https://doi.org/10.1016/j.molimm.2020.11.015 [DOI: 10.1016/j.molimm.2020.11.015]
  122. Bo J, Yang Y, Zheng R, Fang C, Jiang Y, Liu J, Chen M, Hong F, Bailey C, Segner H, Wang K (2019) Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish Shellfish Immunol 93:1007–1017. https://doi.org/10.1016/j.fsi.2019.08.054 [DOI: 10.1016/j.fsi.2019.08.054]
  123. Chen HC, Pan CY, Rajanbabu V, Lee YY, Tsai WR, Chen JY (2020) Lack of acute toxicity and mutagenicity from recombinant Epinephelus lanceolatus piscidin expressed in Pichia pastoris. Mar Drugs 18:1–17. https://doi.org/10.3390/md18040206 [DOI: 10.3390/md18040206]
  124. Li K, Li W, Chen X, Luo T, Mu Y, Chen X (2021) Molecular and functional identification of a β-defensin homolog in large yellow croaker (Larimichthys crocea). J Fish Dis 44:391–400. https://doi.org/10.1111/jfd.13324 [DOI: 10.1111/jfd.13324]
  125. Raveendran A, Dhanya Lenin KL, Anju MV, Neelima S, Anooja VV, Athira PP, Archana K, Philip R, Antony SP (2021) β-Defensin from the Asian sea bass, Lates calcarifer: molecular prediction and phylogenetic analysis. Probiotics Antimicrob Proteins 13:1798–1807. https://doi.org/10.1007/s12602-021-09804-5 [DOI: 10.1007/s12602-021-09804-5]
  126. Dhanya Lenin KL, Iyer RV, Raveendran A, Anju MV, Philip R, Antony SP (2021) β-Defensins from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus): molecular characterization and phylogenetic analysis. Mol Biol Rep 48:4943–4951. https://doi.org/10.1007/s11033-021-06435-5 [DOI: 10.1007/s11033-021-06435-5]
  127. Shabir U, Dar JS, Bhat AH, Ganai BA, Khan IA (2022) Isolation and characterization of β-defensin-like protein 1 from epidermal mucus of fungal infected fish (Cyprinus carpio) and assessment of its antimicrobial potencies. Aquacult Rep 23:101056. https://doi.org/10.1016/J.AQREP.2022.101056 [DOI: 10.1016/J.AQREP.2022.101056]
  128. Anooja VV, Anju MV, Athira PP, Archana NK, Radhakrishnan CK, Philip R (2020) Structural, functional and phylogenetic analysis of a beta defensin gene from the Whipfin silverbiddy, Gerres filamentosus (Cuvier, 1829). Gene Rep 21:100805. https://doi.org/10.1016/j.genrep.2020.100805 [DOI: 10.1016/j.genrep.2020.100805]
  129. Barroso C, Carvalho P, Gonçalves JFM, Rodrigues PNS, Neves JV (2021) Antimicrobial peptides: identification of two beta-defensins in a teleost fish, the European sea bass (Dicentrarchus labrax). Pharmaceuticals 14:1–16. https://doi.org/10.3390/ph14060566 [DOI: 10.3390/ph14060566]
  130. Athira PP, Anooja VV, Anju MV, Neelima S, Archana K, Muhammed Musthafa S, Antony SP, Singh ISB, Philip R (2022) A β-defensin isoform from the Flathead grey mullet, Mugil cephalus (Linnaeus 1758): structural and functional characterisation in silico. Anim Gene 25:200128. https://doi.org/10.1016/J.ANGEN.2022.200128 [DOI: 10.1016/J.ANGEN.2022.200128]
  131. Neelima S, Archana K, Athira PP, Anju MV, Anooja VV, Bright Singh IS, Philip R (2021) Molecular characterization of a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger (Ruppel, 1836). J Genet Eng Biotechnol. https://doi.org/10.1186/s43141-021-00175-6 [DOI: 10.1186/s43141-021-00175-6]
  132. Feng J, Jia Z, Yuan G, Zhu X, Liu Q, Wu K, Wang J, Zou J (2023) Expression and functional characterization of three β-defensins in grass carp (Ctenopharyngodon idella). Dev Comp Immunol 140:104616. https://doi.org/10.1016/J.DCI.2022.104616 [DOI: 10.1016/J.DCI.2022.104616]
  133. Yang K, Hou B, Ren F, Zhou H, Zhao T (2019) Characterization of grass carp (Ctenopharyngodon idella) beta-defensin 1: implications for its role in inflammation control. Biosci Biotechnol Biochem 83:87–94. https://doi.org/10.1080/09168451.2018.1519386 [DOI: 10.1080/09168451.2018.1519386]
  134. Harte A, Tian G, Xu Q, Secombes CJ, Wang T (2020) Five subfamilies of β-defensin genes are present in salmonids: evolutionary insights and expression analysis in Atlantic salmon Salmo salar. Dev Comp Immunol 104:103560. https://doi.org/10.1016/j.dci.2019.103560 [DOI: 10.1016/j.dci.2019.103560]
  135. Athira PP, Anooja VV, Anju MV, Neelima S, Archana K, Muhammed Musthafa S, Antony SP, Bright Singh IS, Philip R (2022) A hepatic antimicrobial peptide, hepcidin from Indian major carp, Catla catla: molecular identification and functional characterization. J Genet Eng Biotechnol. https://doi.org/10.1186/s43141-022-00330-7 [DOI: 10.1186/s43141-022-00330-7]
  136. Go H-J, Kim C-H, Park JB, Kim TY, Lee TK, Oh HY, Park NG (2019) Biochemical and molecular identification of a novel hepcidin type 2-like antimicrobial peptide in the skin mucus of the pufferfish Takifugu pardalis. Fish Shellfish Immunol 93:683–693. https://doi.org/10.1016/j.fsi.2019.08.017 [DOI: 10.1016/j.fsi.2019.08.017]
  137. Jin Z, Shen M, Wang L, Wang C, Gao M, Yu G, Chang Z, Zhang X (2023) Antibacterial and immunoregulatory activity of an antimicrobial peptide hepcidin in loach (Misgurnus anguillicaudatus). Int J Biol Macromol 242:124833. https://doi.org/10.1016/j.ijbiomac.2023.124833 [DOI: 10.1016/j.ijbiomac.2023.124833]
  138. Kim C-H, Kim EJ, Nam YK (2019) Chondrostean sturgeon hepcidin: an evolutionary link between teleost and tetrapod hepcidins. Fish Shellfish Immunol 88:117–125. https://doi.org/10.1016/j.fsi.2019.02.045 [DOI: 10.1016/j.fsi.2019.02.045]
  139. Huang T, Gu W, Wang B, Zhang Y, Cui L, Yao Z, Zhao C, Xu G (2019) Identification and expression of the hepcidin gene from brown trout (Salmo trutta) and functional analysis of its synthetic peptide. Fish Shellfish Immunol 87:243–253. https://doi.org/10.1016/j.fsi.2019.01.020 [DOI: 10.1016/j.fsi.2019.01.020]
  140. Serna-Duque JA, Cuesta A, Esteban MÁ (2022) Massive gene expansion of hepcidin, a host defence peptide, in gilthead seabream (Sparus aurata). Fish Shellfish Immunol 124:563–571. https://doi.org/10.1016/j.fsi.2022.04.032 [DOI: 10.1016/j.fsi.2022.04.032]
  141. Valero Y, Arizcun M, Cortés J, Ramírez-Cepeda F, Guzmán F, Mercado L, Esteban MÁ, Chaves-Pozo E, Cuesta A (2020) NK-lysin, dicentracin and hepcidin antimicrobial peptides in European sea bass. Ontogenetic development and modulation in juveniles by nodavirus. Dev Comp Immunol 103:103516. https://doi.org/10.1016/j.dci.2019.103516 [DOI: 10.1016/j.dci.2019.103516]
  142. Lu X, Han Y-C, Shepherd BS, Xiang Y, Deng D-F, Vinyard BT (2023) Molecular analysis and sex-specific response of the hepcidin gene in yellow perch (Perca flavescens) following lipopolysaccharide challenge. Probiotics Antimicrob Proteins 15:215–225. https://doi.org/10.1007/s12602-022-10024-8 [DOI: 10.1007/s12602-022-10024-8]
  143. Lee Y, Kim N, Roh H, Park J, Kim M, Lee J, Kim D-H (2022) Hepcidin-1 in olive flounder (Paralichthys olivaceus): gene expression, antimicrobial and therapeutic effects of synthetic peptides against bacterial and viral infections. Aquaculture 560:738480. https://doi.org/10.1016/j.aquaculture.2022.738480 [DOI: 10.1016/j.aquaculture.2022.738480]
  144. Zhu Q-Y, Chen R-Y, Yu J, Ding G-H, Seah RWX, Chen J (2023) Antimicrobial peptide hepcidin contributes to restoration of the intestinal flora after Aeromonas hydrophila infection in Acrossocheilus fasciatus. Comp Biochem Physiol C 263:109486. https://doi.org/10.1016/j.cbpc.2022.109486 [DOI: 10.1016/j.cbpc.2022.109486]
  145. Liu M, Hu R, Li W, Yang W, Xu Q, Chen L (2022) Identification of antibacterial activity of hepcidin from Antarctic notothenioid fish. Front Microbiol. https://doi.org/10.3389/fmicb.2022.834477 [DOI: 10.3389/fmicb.2022.834477]
  146. Zhang Z, Zhou Y, Zhang H, Du X, Cao Z, Wu Y, Liu C, Sun Y (2023) Antibacterial activity and mechanisms of TroHepc2-22, a derived peptide of Hepcidin2 from Golden Pompano (Trachinotus ovatus). Int J Mol Sci. https://doi.org/10.3390/ijms24119251 [DOI: 10.3390/ijms24119251]
  147. Ma X, Qiao Y, Shao Y, Chen C (2021) Antimicrobial peptide hepcidin contributes to host defence of Centropristis striata against Vibrio harveyi challenge. Acta Oceanol Sin 40:61–66. https://doi.org/10.1007/s13131-021-1776-4 [DOI: 10.1007/s13131-021-1776-4]
  148. Petano-Duque JM, Lozano-Villegas KJ, Céspedes-Rubio ÁE, Rondón-Barragán IS (2022) Molecular characterization of HEPCIDIN-1 (HAMP1) gene in red-bellied pacu (Piaractus brachypomus). Dev Comp Immunol 130:104353. https://doi.org/10.1016/j.dci.2022.104353 [DOI: 10.1016/j.dci.2022.104353]
  149. Yin X, Chen N, Mu L, Bai H, Wu H, Qi W, Huang Y, Jian J, Wang A, Ye J (2022) Identification and characterization of hepcidin from Nile Tilapia (Oreochromis niloticus) in response to bacterial infection and iron overload. Aquaculture 546:737317. https://doi.org/10.1016/j.aquaculture.2021.737317 [DOI: 10.1016/j.aquaculture.2021.737317]
  150. Hal AM, El-Barbary MI (2021) Comparative hepcidin gene expression of Nile tilapia (Oreochromis niloticus) tissues during the therapy of bacterial infections. Egypt J Aquat Res 47:409–415. https://doi.org/10.1016/j.ejar.2021.09.003 [DOI: 10.1016/j.ejar.2021.09.003]
  151. Xie J, Obiefuna V, Hodgkinson JW, McAllister M, Belosevic M (2019) Teleost antimicrobial peptide hepcidin contributes to host defence of goldfish (Carassius auratus L.) against Trypanosoma carassii. Dev Comp Immunol 94:11–15. https://doi.org/10.1016/j.dci.2019.01.007 [DOI: 10.1016/j.dci.2019.01.007]
  152. Ghodsi Z, Kalbassi MR, Farzaneh P, Mobarez AM, Beemelmanns C, Amiri Moghaddam J (2020) Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). Fish Shellfish Immunol 104:55–61. https://doi.org/10.1016/j.fsi.2020.05.067 [DOI: 10.1016/j.fsi.2020.05.067]
  153. Zheng L, Li Y, Wang J, Pan Y, Chen J, Zheng W, Lin L (2020) Antibacterial and antiparasitic activities analysis of a hepcidin-like antimicrobial peptide from Larimichthys crocea. Acta Oceanol Sin 39:129–139. https://doi.org/10.1007/s13131-020-1580-6 [DOI: 10.1007/s13131-020-1580-6]
  154. Pazhur Mohandas S, Gopi J, Raja Swaminathan T (2023) Molecular identification and in silico functional characterization of a histone H2A derived antimicrobial peptide from Tilapia lake virus (TiLV) infected Nile tilapia (Oreochromis niloticus). https://doi.org/10.21203/RS.3.RS-3065979/V1
  155. Lenin KLD, Raveendran A, Antony SP (2023) Identification and in silico structural and functional analysis of a histone H2A-derived antimicrobial peptide from teleost fishes. Anim Gene 28:200148. https://doi.org/10.1016/j.angen.2023.200148 [DOI: 10.1016/j.angen.2023.200148]
  156. Singh R, Narasimhudu M, Anju M, Antony S, Phlip R (2021) Identification and molecular characterization of a histone derived antimicrobial peptide from Cyprinus carpio. Pharm Innov J 10:266–271
  157. Singh R, Antony SP, Phlip R (2012) Identification and molecular characterization of a histone derived antimicrobial peptide from Catla catla. ISRN Mol Biol 2021:276–281. https://doi.org/10.5402/2012/219656 [DOI: 10.5402/2012/219656]
  158. Athira PP, Anju MV, Anooja VV, Archana K, Neelima S, Rosamma P (2020) A histone H2A-derived antimicrobial peptide, Hipposin from mangrove whip ray, Himantura walga: molecular and functional characterisation. 3 Biotech 10:467. https://doi.org/10.1007/s13205-020-02455-3 [DOI: 10.1007/s13205-020-02455-3]
  159. Ma X, Jin Y, Qiao Y, Zhong S, Xing Y, Chen X (2023) Antimicrobial activity of histone1-derived peptides from large yellow croaker Larimichthys crocea. Aquaculture 570:739430. https://doi.org/10.1016/j.aquaculture.2023.739430 [DOI: 10.1016/j.aquaculture.2023.739430]
  160. Sathyan N, Muhammed Musthafa S, Anju MV, Archana K, Athira PP, Prathap N, Chaithanya ER, Priyaja P, Bright Singh IS, Philip R (2023) Functional characterization of a histone H2A derived antimicrobial peptide HARRIOTTIN-1 from sicklefin chimaera Neoharriotta pinnata. Dev Comp Immunol 138:104554. https://doi.org/10.1016/j.dci.2022.104554 [DOI: 10.1016/j.dci.2022.104554]
  161. Choi K-Y, Chow LNY, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 4:361–370. https://doi.org/10.1159/000336630 [DOI: 10.1159/000336630]
  162. Cole AM, Weis P, Diamond G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder*. J Biol Chem 272:12008–12013. https://doi.org/10.1074/jbc.272.18.12008 [DOI: 10.1074/jbc.272.18.12008]
  163. Pinzón-Arango PA, Nagarajan R, Camesano TA (2013) Interactions of antimicrobial peptide chrysophsin-3 with Bacillus anthracis in sporulated, germinated, and vegetative states. J Phys Chem B 117:6364–6372. https://doi.org/10.1021/jp400489u [DOI: 10.1021/jp400489u]
  164. Niu S-F, Jin Y, Xu X, Qiao Y, Wu Y, Mao Y, Su Y-Q, Wang J (2013) Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish Shellfish Immunol 35:513–524. https://doi.org/10.1016/j.fsi.2013.05.007 [DOI: 10.1016/j.fsi.2013.05.007]
  165. Pan C-Y, Chen J-Y, Lin T-L, Lin C-H (2009) In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides 30:1058–1068. https://doi.org/10.1016/j.peptides.2009.02.006 [DOI: 10.1016/j.peptides.2009.02.006]
  166. Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L (2004) Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323:268–275. https://doi.org/10.1016/j.virol.2004.02.029 [DOI: 10.1016/j.virol.2004.02.029]
  167. Browne MJ, Feng CY, Booth V, Rise ML (2011) Characterization and expression studies of Gaduscidin-1 and Gaduscidin-2; paralogous antimicrobial peptide-like transcripts from Atlantic cod (Gadus morhua). Dev Comp Immunol 35:399–408. https://doi.org/10.1016/j.dci.2010.11.010 [DOI: 10.1016/j.dci.2010.11.010]
  168. Buonocore F, Randelli E, Casani D, Picchietti S, Belardinelli MC, de Pascale D, De Santi C, Scapigliati G (2012) A piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus (Perciformes: Channichthyidae): molecular characterization, localization and bactericidal activity. Fish Shellfish Immunol 33:1183–1191. https://doi.org/10.1016/j.fsi.2012.09.005 [DOI: 10.1016/j.fsi.2012.09.005]
  169. Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–647. https://doi.org/10.1016/j.molimm.2006.01.012 [DOI: 10.1016/j.molimm.2006.01.012]
  170. Nam B-H, Moon J-Y, Kim Y-O, Kong HJ, Kim W-J, Lee S-J, Kim K-K (2010) Multiple β-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol 28:267–274. https://doi.org/10.1016/j.fsi.2009.11.004 [DOI: 10.1016/j.fsi.2009.11.004]
  171. Jin J-Y, Zhou L, Wang Y, Li Z, Zhao J-G, Zhang Q-Y, Gui J-F (2010) Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS ONE 5:e12883. https://doi.org/10.1371/journal.pone.0012883 [DOI: 10.1371/journal.pone.0012883]
  172. Hunter HN, Fulton DB, Ganz T, Vogel HJ (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis * 210. J Biol Chem 277:37597–37603. https://doi.org/10.1074/jbc.M205305200 [DOI: 10.1074/jbc.M205305200]
  173. Liang T, Ji W, Zhang G-R, Wei K-J, Feng K, Wang W-M, Zou G-W (2013) Molecular cloning and expression analysis of liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 genes in the blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 35:553–563. https://doi.org/10.1016/j.fsi.2013.05.021 [DOI: 10.1016/j.fsi.2013.05.021]
  174. Chang W-T, Pan C-Y, Rajanbabu V, Cheng C-W, Chen J-Y (2011) Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1–5, shows antitumor activity in cancer cells. Peptides 32:342–352. https://doi.org/10.1016/j.peptides.2010.11.003 [DOI: 10.1016/j.peptides.2010.11.003]
  175. Cai L, Cai J-J, Liu H-P, Fan D-Q, Peng H, Wang K-J (2012) Recombinant medaka (Oryzias melastigmus) pro-hepcidin: multifunctional characterization. Comp Biochem Physiol B 161:140–147. https://doi.org/10.1016/j.cbpb.2011.10.006 [DOI: 10.1016/j.cbpb.2011.10.006]
  176. Robinette D, Wada S, Arroll T, Levy MG, Miller WL, Noga EJ (1998) Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol Life Sci 54:467–475. https://doi.org/10.1007/s000180050175 [DOI: 10.1007/s000180050175]
  177. Noga EJ, Fan Z, Silphaduang U (2001) Histone-like proteins from fish are lethal to the parasitic dinoflagellate Amyloodinium ocellatum. Parasitology 123:57–65. https://doi.org/10.1017/s0031182001007971 [DOI: 10.1017/s0031182001007971]
  178. Robinette DW, Noga EJ (2001) Histone-like protein: a novel method for measuring stress in fish. Dis Aquat Organ 44:97–107. https://doi.org/10.3354/dao044097 [DOI: 10.3354/dao044097]
  179. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332. https://doi.org/10.1038/s41573-019-0058-8 [DOI: 10.1038/s41573-019-0058-8]
  180. Hancock EWR, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2:79–83. https://doi.org/10.2174/1568005024605855 [DOI: 10.2174/1568005024605855]
  181. Sani M-A, Separovic F (2016) How membrane-active peptides get into lipid membranes. Acc Chem Res 49:1130–1138. https://doi.org/10.1021/acs.accounts.6b00074 [DOI: 10.1021/acs.accounts.6b00074]
  182. da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040. https://doi.org/10.1007/s00253-015-6375-x [DOI: 10.1007/s00253-015-6375-x]
  183. Kunda NK (2020) Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today 25:238–247. https://doi.org/10.1016/j.drudis.2019.11.012 [DOI: 10.1016/j.drudis.2019.11.012]
  184. Wang X, Yu H, Xing R, Li P (2017) Characterization, preparation, and purification of marine bioactive peptides. Biomed Res Int 2017:9746720. https://doi.org/10.1155/2017/9746720 [DOI: 10.1155/2017/9746720]
  185. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31:12416–12423. https://doi.org/10.1021/bi00164a017 [DOI: 10.1021/bi00164a017]
  186. Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M (2002) Solid-state NMR investigations of peptide–lipid interaction and orientation of a β-sheet antimicrobial peptide, protegrin. Biochemistry 41:9852–9862. https://doi.org/10.1021/bi0257991 [DOI: 10.1021/bi0257991]
  187. Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta Biomembr 1462:157–183. https://doi.org/10.1016/S0005-2736(99)00205-9 [DOI: 10.1016/S0005-2736(99)00205-9]
  188. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-Stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485. https://doi.org/10.1016/S0006-3495(01)75802-X [DOI: 10.1016/S0006-3495(01)75802-X]
  189. Spaar A, Münster C, Salditt T (2004) Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys J 87:396–407. https://doi.org/10.1529/biophysj.104.040667 [DOI: 10.1529/biophysj.104.040667]
  190. Hallock KJ, Lee D-K, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84:3052–3060. https://doi.org/10.1016/S0006-3495(03)70031-9 [DOI: 10.1016/S0006-3495(03)70031-9]
  191. Boparai KJ, Sharma KP (2020) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27:4–16. https://doi.org/10.2174/0929866526666190822165812 [DOI: 10.2174/0929866526666190822165812]
  192. Jiang M, Chen R, Chen F, Zhu X, Wang K-J (2022) A new crustin gene homolog SpCrus8 identified in Scylla paramamosain exerting in vivo protection through opsonization and immunomodulation. Front Immunol 13:946227 [DOI: 10.3389/fimmu.2022.946227]
  193. de Barros E, Gonçalves RM, Cardoso MH, Santos NC, Franco OL, Cândido ES (2019) Snake venom cathelicidins as natural antimicrobial peptides. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01415 [DOI: 10.3389/fphar.2019.01415]
  194. Sigurgrimsdottir H, Bjornsdottir EO, Eysteinsdottir JH, Olafsson JH, Sigurgeirsson B, Agnarsson BA, Einarsdottir HK, Freysdottir J, Ludviksson BR (2021) Keratinocytes secrete multiple inflammatory and immune biomarkers, which are regulated by LL-37, in a psoriasis mimicking microenvironment. Scand J Immunol 94:e13096. https://doi.org/10.1111/sji.13096 [DOI: 10.1111/sji.13096]
  195. Li X, Zuo S, Wang B, Zhang K, Wang Y (2022) Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules. https://doi.org/10.3390/molecules27092675 [DOI: 10.3390/molecules27092675]
  196. Rima M, Rima M, Fajloun Z, Sabatier J-M, Bechinger B, Naas T (2021) Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics. https://doi.org/10.3390/antibiotics10091095 [DOI: 10.3390/antibiotics10091095]

MeSH Term

Animals
Mucormycosis
Antifungal Agents
Diabetes Mellitus
Diabetes Complications

Chemicals

Antifungal Agents

Word Cloud

Created with Highcharts 10.0.0peptidesfish-derivedmucormycosistherapeuticdiabeticMucormycosistreatmentnovelantimicrobialmodesactionpotentialapplicationantifungalinvestigateclinicalfutureextremelyfatalfungalinfectionmajorhurdlediabetesconsequencesincreasingprevalencerestrictedchoicesurgeinvestigationtechniqueseffectivecharacteristicsvariedlatelyemergedviableoptionsfightreviewexaminesdiagnosingmanagingrelationcomplicationsFirstexaminepathophysiologydifficultiestreatingdiabeticsemphasizecriticalneedalternativemethodstacklinglimitationscurrentlyavailablemedicinespossibilityinnovativeapproachcombatinvestigatedderivedseveralfishspeciesprovidewidepropertiesvarietydiseasesalsodistinctrupturecellmembranessuppressiondevelopmentmodificationhostimmunologicalresponseFurthermoreproblemsprospectsconnectedUltimatelyadvancesofferinterestingavenuesmanagementcontextcomorbiditiesresearchtrialsneededproperlypeptide'spavewayadoptiontherapiesAdvancementsmucormycosis:strategytreatcompilationAnti-microbialDiabeticsFishTreatment

Similar Articles

Cited By