Chromosome-level Genome Assembly and Sex-specific Differential Transcriptome of the White-backed Planthopper, .

Yu-Xuan Ye, Dan-Ting Li, Si-Yu Zhang, Zhi-Cheng Shen, Chuan-Xi Zhang
Author Information
  1. Yu-Xuan Ye: Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
  2. Dan-Ting Li: Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
  3. Si-Yu Zhang: Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
  4. Zhi-Cheng Shen: Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
  5. Chuan-Xi Zhang: Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

Abstract

Background: The white-backed planthopper (WBPH), , causes great damage to many crops (mainly rice) by direct feeding or transmitting plant viruses. The previous genome assembly was generated by second-generation sequencing technologies, with a contig N50 of only 51.5 kb, and contained a lot of heterozygous sequences.
Methods: We utilized third-generation sequencing technologies and Hi-C data to generate a high-quality chromosome-level assembly. We also provide a large amount of transcriptome data for full-length transcriptome analysis and gender differential expression analysis.
Results: The final assembly comprised 56.38 Mb, with a contig N50 of 2.20 Mb and a scaffold N50 of 45.25 Mb. Fourteen autosomes and one X chromosome were identified. More than 99.5% of the assembled bases located on the 15 chromosomes. 95.9% of the complete BUSCO Hemiptera genes were detected in the final assembly and 16,880 genes were annotated. 722 genes were relatively highly expressed in males, while 60 in the females.
Conclusion: The integrated genome, definite sex chromosomes, comprehensive transcriptome profiles, high efficiency of RNA interference and short life cycle substantially made WBPH an efficient research object for functional genomics.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.15103830

References

  1. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  2. BMC Bioinformatics. 2003 Sep 11;4:41 [PMID: 12969510]
  3. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  4. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  5. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  6. Mol Ecol Resour. 2021 Jan;21(1):226-237 [PMID: 32780934]
  7. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  8. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  9. Nucleic Acids Res. 2015 Jan;43(Database issue):D213-21 [PMID: 25428371]
  10. Gigascience. 2017 Jan 1;6(1):1-9 [PMID: 28369349]
  11. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  12. Mol Ecol Resour. 2021 May;21(4):1287-1298 [PMID: 33460519]
  13. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]
  14. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  15. Gigascience. 2019 Sep 1;8(9): [PMID: 31494669]
  16. Bioinformatics. 2017 Aug 15;33(16):2577-2579 [PMID: 28407147]
  17. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  18. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  19. Nature. 2015 Mar 26;519(7544):464-7 [PMID: 25799997]
  20. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 [PMID: 16845043]
  21. Nat Commun. 2017 Jul 5;8(1):59 [PMID: 28680106]
  22. Brief Bioinform. 2019 Jul 19;20(4):1542-1559 [PMID: 29617724]
  23. Plant Physiol. 2019 Jan;179(1):38-54 [PMID: 30401722]
  24. Hortic Res. 2020 Jun 1;7(1):95 [PMID: 32528707]
  25. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  26. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  27. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D154-9 [PMID: 15608167]
  28. BMC Genomics. 2013 Apr 23;14:273 [PMID: 23617698]
  29. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  30. Bioinformatics. 2020 Apr 1;36(7):2253-2255 [PMID: 31778144]
  31. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  32. Nat Methods. 2020 Feb;17(2):155-158 [PMID: 31819265]
  33. Pest Manag Sci. 2008 Nov;64(11):1115-21 [PMID: 18803329]
  34. Genome Biol Evol. 2015 Nov 10;7(12):3259-68 [PMID: 26556591]
  35. Nat Biotechnol. 2013 Dec;31(12):1119-25 [PMID: 24185095]
  36. Genome Biol. 2015 Aug 26;16:175 [PMID: 26306623]
  37. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  38. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  39. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]

Word Cloud

Created with Highcharts 10.0.0assemblyWBPHgenomeN50transcriptomeMbchromosomesgenesplanthoppersequencingtechnologiescontigdataanalysisfinalBUSCOsexRNAinterferenceChromosome-levelWhite-backedBackground:white-backedcausesgreatdamagemanycropsmainlyricedirectfeedingtransmittingplantvirusespreviousgeneratedsecond-generation515kbcontainedlotheterozygoussequencesMethods:utilizedthird-generationHi-Cgeneratehigh-qualitychromosome-levelalsoprovidelargeamountfull-lengthgenderdifferentialexpressionResults:comprised5638220scaffold4525FourteenautosomesoneXchromosomeidentified995%assembledbaseslocated15959%completeHemipteradetected16880annotated722relativelyhighlyexpressedmales60femalesConclusion:integrateddefinitecomprehensiveprofileshighefficiencyshortlifecyclesubstantiallymadeefficientresearchobjectfunctionalgenomicsGenomeAssemblySex-specificDifferentialTranscriptomePlanthopperSogatellafurcifera

Similar Articles

Cited By