Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing.

Michele Cotrufo, Akshaj Arora, Sahitya Singh, Andrea Alù
Author Information
  1. Michele Cotrufo: Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA. mcotrufo@optics.rochester.edu. ORCID
  2. Akshaj Arora: Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA. ORCID
  3. Sahitya Singh: Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
  4. Andrea Alù: Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA. aalu@gc.cuny.edu. ORCID

Abstract

Optical metasurfaces performing analog image processing - such as spatial differentiation and edge detection - hold the potential to reduce processing times and power consumption, while avoiding bulky 4 F lens systems. However, current designs have been suffering from trade-offs between spatial resolution, throughput, polarization asymmetry, operational bandwidth, and isotropy. Here, we show that dispersion engineering provides an elegant way to design metasurfaces where all these critical metrics are simultaneously optimized. We experimentally demonstrate silicon metasurfaces performing isotropic and dual-polarization edge detection, with numerical apertures above 0.35 and spectral bandwidths of 35 nm around 1500 nm. Moreover, we introduce quantitative metrics to assess the efficiency of these devices. Thanks to the low loss nature and dual-polarization response, our metasurfaces feature large throughput efficiencies, approaching the theoretical maximum for a given NA. Our results pave the way for low-loss, high-efficiency and broadband optical computing and image processing with free-space metasurfaces.

References

  1. Nat Commun. 2019 May 3;10(1):2058 [PMID: 31053711]
  2. Opt Express. 2014 Oct 20;22(21):25084-92 [PMID: 25401541]
  3. Nature. 2020 Oct;586(7828):207-216 [PMID: 33028997]
  4. Nature. 2020 Jul;583(7815):226-231 [PMID: 32641812]
  5. Nature. 2019 May;569(7755):208-214 [PMID: 31068721]
  6. Nat Commun. 2017 May 19;8:15391 [PMID: 28524882]
  7. Science. 2009 Sep 18;325(5947):1513-5 [PMID: 19696310]
  8. Phys Rev Lett. 2018 Oct 26;121(17):173004 [PMID: 30411907]
  9. Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11137-11140 [PMID: 31101711]
  10. J Opt Soc Am A Opt Image Sci Vis. 2018 Oct 1;35(10):1685-1691 [PMID: 30462088]
  11. Nano Lett. 2019 Dec 11;19(12):8418-8423 [PMID: 31675241]
  12. Nat Commun. 2018 Oct 10;9(1):4196 [PMID: 30305616]
  13. Nano Lett. 2020 Apr 8;20(4):2791-2798 [PMID: 32155076]
  14. Natl Sci Rev. 2020 Aug 06;8(6):nwaa176 [PMID: 34691657]
  15. Science. 2011 Oct 21;334(6054):333-7 [PMID: 21885733]
  16. Nat Nanotechnol. 2023 Apr;18(4):365-372 [PMID: 36635333]
  17. Nat Commun. 2021 Jan 29;12(1):680 [PMID: 33514708]
  18. Science. 2014 Jan 10;343(6167):160-3 [PMID: 24408430]

Word Cloud

Created with Highcharts 10.0.0metasurfacesprocessingimagedual-polarizationperforminganalog-spatialedgedetectionthroughputwaymetricshigh-efficiencybroadbandOpticaldifferentiationholdpotentialreducetimespowerconsumptionavoidingbulky4 FlenssystemsHowevercurrentdesignssufferingtrade-offsresolutionpolarizationasymmetryoperationalbandwidthisotropyshowdispersionengineeringprovideselegantdesigncriticalsimultaneouslyoptimizedexperimentallydemonstratesiliconisotropicnumericalapertures035spectralbandwidths35 nmaround1500 nmMoreoverintroducequantitativeassessefficiencydevicesThankslowlossnatureresponsefeaturelargeefficienciesapproachingtheoreticalmaximumgivenNAresultspavelow-lossopticalcomputingfree-spaceDispersionengineeredhigh-NA

Similar Articles

Cited By