Anemonefishes: A model system for evolutionary genomics.

Marcela Herrera, Timothy Ravasi, Vincent Laudet
Author Information
  1. Marcela Herrera: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan. ORCID
  2. Timothy Ravasi: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
  3. Vincent Laudet: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan. ORCID

Abstract

Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.

Keywords

References

  1. PLoS One. 2021 Dec 15;16(12):e0261331 [PMID: 34910772]
  2. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13245-13250 [PMID: 27799530]
  3. Curr Biol. 2013 Oct 7;23(19):1884-8 [PMID: 24035541]
  4. BMC Evol Biol. 2012 Nov 02;12:212 [PMID: 23122007]
  5. Mol Phylogenet Evol. 2019 Oct;139:106526 [PMID: 31158486]
  6. Dev Dyn. 2021 Nov;250(11):1651-1667 [PMID: 33899313]
  7. BMC Genomics. 2018 Oct 16;19(1):749 [PMID: 30326831]
  8. Annu Rev Neurosci. 2017 Jul 25;40:125-147 [PMID: 28375767]
  9. Microbiome. 2021 May 17;9(1):109 [PMID: 34001275]
  10. Proc Biol Sci. 2015 Nov 22;282(1819): [PMID: 26582017]
  11. Ecol Evol. 2012 Jul;2(7):1592-604 [PMID: 22957165]
  12. BMC Genomics. 2017 May 2;18(1):341 [PMID: 28464822]
  13. G3 (Bethesda). 2022 May 6;12(5): [PMID: 35353192]
  14. Cell Res. 2005 Jul;15(7):483-94 [PMID: 16045811]
  15. Proteomics. 2010 Feb;10(4):858-72 [PMID: 19953554]
  16. Genes (Basel). 2018 Feb 14;9(2): [PMID: 29443947]
  17. Evodevo. 2020 Oct 7;11:20 [PMID: 33042514]
  18. Gigascience. 2018 Mar 1;7(3):1-6 [PMID: 29342277]
  19. BMC Ecol. 2018 Apr 12;18(1):14 [PMID: 29650003]
  20. OMICS. 2014 Feb;18(2):98-110 [PMID: 24380445]
  21. Mol Biol Rep. 2020 Feb;47(2):1521-1525 [PMID: 31749119]
  22. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1785-90 [PMID: 23307812]
  23. Behav Ecol. 2022 Nov 01;34(1):19-32 [PMID: 36789393]
  24. Proc Biol Sci. 2016 Mar 30;283(1827):20160277 [PMID: 27030417]
  25. G3 (Bethesda). 2018 May 4;8(5):1795-1806 [PMID: 29599177]
  26. Comp Biochem Physiol A Mol Integr Physiol. 2010 Aug;156(4):407-15 [PMID: 20348005]
  27. Toxicon. 1994 Sep;32(9):1059-68 [PMID: 7801342]
  28. Trends Genet. 2016 Dec;32(12):815-827 [PMID: 27836208]
  29. Nature. 2020 Oct;586(7827):75-79 [PMID: 32848251]
  30. Proc Natl Acad Sci U S A. 2005 May 3;102 Suppl 1:6543-9 [PMID: 15851679]
  31. J Exp Biol. 2013 Mar 15;216(Pt 6):970-6 [PMID: 23447664]
  32. G3 (Bethesda). 2023 Mar 9;13(3): [PMID: 36626199]
  33. Nat Methods. 2017 Sep;14(9):921-927 [PMID: 28825704]
  34. J Proteomics. 2018 Oct 30;189:11-22 [PMID: 29501709]
  35. J Fish Biol. 2010 Aug;77(3):769-77 [PMID: 20701653]
  36. Front Immunol. 2020 Mar 24;11:512 [PMID: 32265939]
  37. Proc Biol Sci. 2021 Dec 8;288(1964):20211931 [PMID: 34875194]
  38. Front Mol Biosci. 2021 May 17;8:660959 [PMID: 34079817]
  39. BMC Neurosci. 2010 Aug 02;11:90 [PMID: 20678210]
  40. Nat Commun. 2017 Aug 21;8(1):291 [PMID: 28827567]
  41. Curr Opin Genet Dev. 2019 Aug;57:31-38 [PMID: 31421397]
  42. Genome Biol. 2020 Feb 7;21(1):30 [PMID: 32033565]
  43. Biol Sex Differ. 2015 Nov 25;6:26 [PMID: 26613014]
  44. Sci Rep. 2019 Nov 11;9(1):16459 [PMID: 31712572]
  45. Genome Biol Evol. 2021 Oct 1;13(10): [PMID: 34375382]
  46. Nature. 2003 Jul 10;424(6945):145-6 [PMID: 12853944]
  47. Genome Biol Evol. 2023 Jul 3;15(7): [PMID: 37226990]
  48. Trends Ecol Evol. 2017 Sep;32(9):665-680 [PMID: 28818341]
  49. Brief Bioinform. 2017 Mar 1;18(2):205-214 [PMID: 26891983]
  50. J Exp Biol. 2018 Jan 29;221(Pt 2): [PMID: 29378879]
  51. Nat Ecol Evol. 2018 Jun;2(6):944-955 [PMID: 29434349]
  52. J Exp Zool B Mol Dev Evol. 2021 Jun;336(4):376-385 [PMID: 33539680]
  53. Mol Ecol Resour. 2020 Nov;20(6):1647-1657 [PMID: 32687632]
  54. Pigment Cell Melanoma Res. 2019 May;32(3):391-402 [PMID: 30633441]
  55. PLoS One. 2021 May 17;16(5):e0251653 [PMID: 33999965]
  56. Nature. 2016 Oct 13;538(7624):257-259 [PMID: 27706136]
  57. Genome Biol Evol. 2019 Mar 1;11(3):869-882 [PMID: 30830203]
  58. Mol Cell Proteomics. 2012 Jun;11(6):O111.016717 [PMID: 22261725]
  59. Nature. 2021 Apr;592(7856):737-746 [PMID: 33911273]
  60. Annu Rev Cell Dev Biol. 2021 Oct 6;37:441-468 [PMID: 34351785]
  61. Curr Biol. 2005 Jul 26;15(14):1314-8 [PMID: 16051176]
  62. Proteomics. 2013 Apr;13(8):1247-56 [PMID: 23322582]
  63. Brief Bioinform. 2018 Mar 1;19(2):286-302 [PMID: 27881428]
  64. Evodevo. 2021 Jun 19;12(1):8 [PMID: 34147131]
  65. Heredity (Edinb). 2005 Mar;94(3):280-94 [PMID: 15674378]
  66. Sci Rep. 2017 Jul 26;7(1):6547 [PMID: 28747629]
  67. Anal Bioanal Chem. 2012 Sep;404(4):1011-27 [PMID: 22451173]
  68. Cell. 2016 Apr 21;165(3):535-50 [PMID: 27104977]
  69. Annu Rev Genet. 2019 Dec 3;53:505-530 [PMID: 31509458]
  70. Biol Open. 2013 Jul 17;2(9):907-15 [PMID: 24143277]
  71. Sci Rep. 2022 Jul 18;12(1):11238 [PMID: 35851041]
  72. Biol Lett. 2020 Feb;16(2):20190738 [PMID: 32019466]
  73. Sex Dev. 2021;15(1-3):108-121 [PMID: 34111868]
  74. Horm Behav. 2019 Jun;112:65-76 [PMID: 30959023]
  75. Sci Rep. 2018 Mar 6;8(1):4073 [PMID: 29511241]
  76. Mol Ecol Resour. 2020 Mar;20(2):520-530 [PMID: 31887246]
  77. Comp Biochem Physiol B Biochem Mol Biol. 2012 Feb;161(2):124-33 [PMID: 22036613]
  78. Proc Biol Sci. 2018 Jan 10;285(1870): [PMID: 29298932]
  79. Sci Rep. 2015 Oct 13;5:15119 [PMID: 26459884]
  80. PLoS One. 2015 Sep 14;10(9):e0137726 [PMID: 26367311]
  81. Curr Top Dev Biol. 2019;134:71-117 [PMID: 30999982]
  82. Mar Drugs. 2018 Jan 24;16(2): [PMID: 29364843]
  83. Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122154119 [PMID: 35858398]
  84. Mol Ecol. 2021 Oct;30(20):5105-5118 [PMID: 34402113]
  85. Cell Rep. 2023 Jul 25;42(7):112661 [PMID: 37347665]
  86. Int J Mol Sci. 2022 Aug 13;23(16): [PMID: 36012348]
  87. Sci Aging Knowledge Environ. 2006 Jun 28;2006(10):pe20 [PMID: 16807484]
  88. Proc Biol Sci. 2016 May 25;283(1831): [PMID: 27226472]
  89. Comp Biochem Physiol B Biochem Mol Biol. 2008 Jan;149(1):29-37 [PMID: 17919957]
  90. Comp Biochem Physiol B Biochem Mol Biol. 2010 Oct;157(2):198-204 [PMID: 20601066]
  91. Cell Microbiol. 2003 Apr;5(4):203-23 [PMID: 12675679]
  92. Comp Biochem Physiol A Mol Integr Physiol. 2010 Feb;155(2):237-44 [PMID: 19913632]
  93. Mol Ecol. 2020 Dec;29(24):4956-4969 [PMID: 33049090]
  94. Sci Adv. 2020 Mar 18;6(12):eaay3423 [PMID: 32206711]
  95. Sci Rep. 2016 Oct 17;6:35461 [PMID: 27748421]
  96. Gen Comp Endocrinol. 2016 Sep 1;235:89-99 [PMID: 27288637]
  97. J Fish Biol. 2009 Dec;75(9):2287-98 [PMID: 20738687]
  98. Environ Pollut. 2023 Jan 15;317:120792 [PMID: 36473638]
  99. BMC Evol Biol. 2019 Apr 11;19(1):89 [PMID: 30975078]
  100. Proc Biol Sci. 2007 Feb 22;274(1609):591-8 [PMID: 17476781]
  101. Mol Ecol Resour. 2018 Feb 17;: [PMID: 29455459]
  102. Zoological Lett. 2015 Sep 29;1:30 [PMID: 26605075]
  103. DNA Res. 2022 Jun 25;29(4): [PMID: 35861387]
  104. Mol Phylogenet Evol. 2008 Oct;49(1):268-76 [PMID: 18513996]
  105. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5693-7 [PMID: 19307588]
  106. Sci Rep. 2021 Mar 24;11(1):6801 [PMID: 33762724]
  107. Mol Ecol. 2018 Nov;27(22):4516-4528 [PMID: 30267545]
  108. Sci Rep. 2019 Oct 28;9(1):15399 [PMID: 31659260]
  109. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34031155]
  110. Trends Genet. 2019 Apr;35(4):265-278 [PMID: 30819536]
  111. Fish Physiol Biochem. 2013 Jun;39(3):417-29 [PMID: 22926760]
  112. BMC Biol. 2018 Sep 5;16(1):90 [PMID: 30180844]
  113. Nat Biotechnol. 2013 Dec;31(12):1119-25 [PMID: 24185095]
  114. Proc Biol Sci. 2022 Oct 12;289(1984):20221576 [PMID: 36196541]
  115. Am Nat. 2013 Jan;181(1):94-113 [PMID: 23234848]
  116. Nat Commun. 2021 Feb 3;12(1):775 [PMID: 33536437]
  117. Nature. 2014 Sep 18;513(7518):375-381 [PMID: 25186727]
  118. Sci Rep. 2019 Dec 20;9(1):19491 [PMID: 31862916]
  119. Dev Growth Differ. 2021 Dec;63(9):459-466 [PMID: 34786704]
  120. J Evol Biol. 2018 Oct;31(10):1558-1571 [PMID: 29978521]
  121. Mol Ecol Resour. 2019 May;19(3):567-569 [PMID: 31004471]
  122. Nat Commun. 2021 Mar 4;12(1):1447 [PMID: 33664263]
  123. Nat Biotechnol. 2010 Jul;28(7):710-21 [PMID: 20622845]
  124. Mol Ecol Resour. 2022 Oct;22(7):2701-2712 [PMID: 35593537]
  125. Gene. 2006 Dec 30;385:19-27 [PMID: 17084996]
  126. Toxicon. 2009 Dec 15;54(8):1071-4 [PMID: 19268681]
  127. Science. 1998 Mar 27;279(5359):2115-8 [PMID: 9516114]
  128. Nature. 2016 Sep 14;537(7620):347-55 [PMID: 27629641]
  129. Mol Ecol Resour. 2019 May;19(3):570-585 [PMID: 30203521]
  130. Glob Chang Biol. 2022 May;28(9):3007-3022 [PMID: 35238117]
  131. Trends Ecol Evol. 2014 Jan;29(1):51-63 [PMID: 24139972]
  132. Anat Rec (Hoboken). 2014 Aug;297(8):1349-53 [PMID: 24810158]
  133. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  134. J Evol Biol. 2015 Jan;28(1):205-22 [PMID: 25414094]
  135. Dev Dyn. 2019 Jul;248(7):545-568 [PMID: 31070818]
  136. BMC Evol Biol. 2014 Nov 30;14:245 [PMID: 25433367]

MeSH Term

Animals
Perciformes
Biological Evolution
Genomics
Fishes
Sea Anemones

Word Cloud

Created with Highcharts 10.0.0genomicevolutionarymodelgroupfishunderlyingindeedresearchalsosystemmolecularadaptivegenomicsAnemonefishesiconiccoralreefparticularlyknownmutualisticrelationshipseaanemonesmutualismespeciallyintriguinglikelypromptedrapiddiversificationanemonefishUnderstandingarchitectureprocessbecomeoneholygrailsfishesRecentlyanemonefishesusedstudybasishighlycomplextraitscolorpatterningsocialsexchangelarvaldispersallifespanExtensiveresourcesincludingseveralhigh-qualityreferencegenomeslinkagemapvariousgenetictoolsenabledidentificationfeaturescontrollingfascinatingattributesprovidedinsightsmechanismsresponseschangingenvironmentsreviewlatestfindingsnewavenuesledregardedAnemonefishes:Amphiprionradiationchromosome-scaleassemblyclownfishgenomepigmentationproteomicstranscriptomics

Similar Articles

Cited By