Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol.

Ajaysing S Nimbalkar, Kyung-Ryul Oh, Seung Ju Han, Gwang-Nam Yun, Seung Hyeok Cha, Pravin P Upare, Ali Awad, Dong Won Hwang, Young Kyu Hwang
Author Information
  1. Ajaysing S Nimbalkar: Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea.
  2. Kyung-Ryul Oh: Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, United States.
  3. Seung Ju Han: C1 Gas and Carbon Convergent Research Center, Korea Research Institute for Chemical Technology, Dajeon, 34114, South Korea.
  4. Gwang-Nam Yun: Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea.
  5. Seung Hyeok Cha: Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea.
  6. Pravin P Upare: Activon Co. Ltd., Ochang, South Korea.
  7. Ali Awad: Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea.
  8. Dong Won Hwang: Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea. ORCID
  9. Young Kyu Hwang: Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea.

Abstract

The successful synthesis of finely tuned Ni Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic Imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-Propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnO species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.

Keywords

References

  1. R. A. Sheldon, Green Chem. 2014, 16, 950-963.
  2.  
  3. K.-R. Oh, G.-N. Yun, K.-D. Kim, Y.-J. Cheong, C. Yoo, F. Prihatno, H.-Y. Jang, A. H. Valekar, G.-Y. Cha, M. Lee, J. Jung, Y.-U. Kwon, Y. K. Hwang, Chem. Mater. 2022, 34, 8153-8162;
  4. J. H. Jang, H. Sohn, J. Camacho-Bunquin, D. Yang, C. Y. Park, M. Delferro, M. M. Abu-Omar, ACS Sustainable Chem. Eng. 2019, 7, 11438-11447;
  5. A. Patil, S. Shinde, S. Kamble, C. V. Rode, Energy Fuels 2019, 33, 7466-7472;
  6. J. Park, A. H. Valekar, K.-R. Oh, A. Awad, I.-H. Song, C. Yoo, J. An, Y. K. Hwang, Chem. Eng. J. 2023, 463, 142410.
  7. A. Marinas, P. Bruijnincx, J. Ftouni, F. J. Urbano, C. Pinel, Catal. Today 2015, 239, 31-37.
  8. R. Mane, Y. Jeon, C. Rode, Green Chem. 2022, 24, 6751-6781.
  9. M. Główka, T. Krawczyk, ACS Sustainable Chem. Eng. 2023, 11, 7274-7287.
  10.  
  11. K. Kamonsuangkasem, S. Therdthianwong, A. Therdthianwong, N. Thammajak, Appl. Catal. B 2017, 218, 650-663;
  12. E. S. Vasiliadou, V.-L. Yfanti, A. A. Lemonidou, Appl. Catal. B 2015, 163, 258-266;
  13. B. Liu, Y. Nakagawa, C. Li, M. Yabushita, K. Tomishige, ACS Catal. 2022, 12, 15431-15450;
  14. Q. Sun, S. Wang, H. Liu, ACS Catal. 2017, 7, 4265-4275;
  15. I. Gandarias, P. L. Arias, J. Requies, M. El Doukkali, M. B. Güemez, J. Catal. 2011, 282, 237-247;
  16. H. Zhao, L. Zheng, X. Li, P. Chen, Z. Hou, Catal. Today 2020, 355, 84-95.
  17.  
  18. I. Yarulina, A. D. Chowdhury, F. Meirer, B. M. Weckhuysen, J. Gascon, Nat. Catal. 2018, 1, 398-411;
  19. X. Zhang, G. Cui, H. Feng, L. Chen, H. Wang, B. Wang, X. Zhang, L. Zheng, S. Hong, M. Wei, Nat. Commun. 2019, 10, 5812;
  20. T. Jiang, Q. Huai, T. Geng, W. Ying, T. Xiao, F. Cao, Biomass Bioenergy 2015, 78, 71-79;
  21. I. Gandarias, J. Requies, P. L. Arias, U. Armbruster, A. Martin, J. Catal. 2012, 290, 79-89;
  22. S. Wang, H. Liu, Catal. Lett. 2007, 117, 62-67;
  23. A. V. H. Soares, J. B. Salazar, D. D. Falcone, F. A. Vasconcellos, R. J. Davis, F. B. Passos, J. Mol. Catal. A 2016, 415, 27-36.
  24.  
  25. B. C. Miranda, R. J. Chimentão, J. Szanyi, A. H. Braga, J. B. O. Santos, F. Gispert-Guirado, J. Llorca, F. Medina, Appl. Catal. B 2015, 166-167, 166-180;
  26. B. Chen, B. Zhang, Y. Zhang, X. Yang, ChemCatChem 2016, 8, 1929-1936.
  27. A. Morales-Marín, J. L. Ayastuy, U. Iriarte-Velasco, M. A. Gutiérrez-Ortiz, Appl. Catal. B 2019, 244, 931-945.
  28.  
  29. M.-X. Zhao, N. Yang, Z.-X. Li, H. S. Xie, ChemistrySelect 2020, 5, 13681-13689;
  30. S. Pendem, S. R. Bolla, D. J. Morgan, D. B. Shinde, Z. Lai, L. Nakka, J. Mondal, Dalton Trans. 2019, 48, 8791-8802.
  31. H. C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415-5418.
  32.  
  33. H. Zhao, H. Yin, Z. Fu, Z. Chi, L. Li, Q. Zhang, Z. Guo, L. Wang, ChemSusChem 2022, 15, e202200648;
  34. N. Gholampour, Y. Zhao, F. Devred, C. Sassoye, S. Casale, D. P. Debecker, ChemCatChem 2023, 15, e202201338;
  35. Y. Li, X. Cai, S. Chen, H. Zhang, K. H. L. Zhang, J. Hong, B. Chen, D.-H. Kuo, W. Wang, ChemSusChem 2018, 11, 1040-1047.
  36.  
  37. D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, J. Am. Chem. Soc. 2018, 140, 1812-1823;
  38. G. Kaur, R. K. Rai, D. Tyagi, X. Yao, P.-Z. Li, X.-C. Yang, Y. Zhao, Q. Xu, S. K. Singh, J. Mater. Chem. A 2016, 4, 14932-14938;
  39. K.-R. Oh, H. Lee, G.-N. Yun, C. Yoo, J. W. Yoon, A. Awad, H.-W. Jeong, Y. K. Hwang, ACS Appl. Mater. Interfaces 2023, 15, 9296-9306.
  40. P. Nian, H. Liu, X. Zhang, CrystEngComm 2019, 21, 3199-3208.
  41.  
  42. N. Tannert, S. Gokpinar, E. Hasturk, S. Niessing, C. Janiak, Dalton Trans. 2018, 47, 9850-9860;
  43. M. Garcia-Palacin, J. I. Martinez, L. Paseta, A. Deacon, T. Johnson, M. Malankowska, C. Tellez, J. Coronas, ACS Sustainable Chem. Eng. 2020, 8, 2973-2980.
  44. C. Chen, M. R. Alalouni, X. Dong, Z. Cao, Q. Cheng, L. Zheng, L. Meng, C. Guan, L. Liu, E. Abou-Hamad, J. Wang, Z. Shi, K. W. Huang, L. Cavallo, Y. Han, J. Am. Chem. Soc. 2021, 143, 7144-7153.
  45.  
  46. V. Sidey, J. Phys. Chem. Solids 2022, 171, 110992;
  47. C. M. Ma, G. B. Hong, S. C. Lee, Catalysts 2020, 10, 792.
  48. M. Zhan, C. Ge, S. Hussain, A. S. Alkorbi, R. Alsaiari, N. A. Alhemiary, G. Qiao, G. Liu, Chemosphere 2022, 291, 132842.
  49.  
  50. M. Masjedi-Arani, M. Salavati-Niasari, Int. J. Hydrogen Energy 2017, 42, 858-866;
  51. X. Li, N. Zhang, C. Liu, S. Adimi, J. Zhou, D. Liu, S. Ruan, J. Alloys Compd. 2021, 850, 156606;
  52. A. Leelavathi, N. Ravishankar, G. Madras, J. Mater. Chem. A 2016, 4, 14430-14436.
  53.  
  54. A. Onda, T. Komatsu, T. Yashima, J. Catal. 2001, 201, 13-21;
  55. V. G. Deshmane, S. L. Owen, R. Y. Abrokwah, D. Kuila, J. Mol. Catal. A 2015, 408, 202-213.
  56. V. R. Lugo, G. Mondragon-Galicia, A. Gutierrez-Martinez, C. Gutierrez-Wing, O. Rosales Gonzalez, P. Lopez, P. Salinas-Hernandez, F. Tzompantzi, M. I. Reyes Valderrama, R. Perez-Hernandez, RSC Adv. 2020, 10, 41315-41323.
  57.  
  58. Y. Zhao, T. Nishida, E. Minami, S. Saka, H. Kawamoto, Energy Rep. 2020, 6, 2249-2255;
  59. G. Wang, H. Wang, H. Zhang, Q.-M. Zhu, C. Li, H. Shan, ChemCatChem 2016, 8, 3137-3145;
  60. X. Liu, X. Liu, G. Xu, Y. Zhang, C. Wang, Q. Lu, L. Ma, Green Chem. 2019, 21, 5647-5656.
  61.  
  62. R. J. Chimentão, B. C. Miranda, D. Ruiz, F. Gispert-Guirado, F. Medina, J. Llorca, J. B. O. Santos, J. Energy Chem. 2020, 42, 185-194;
  63. W. Guo, Z. Tian, C.-W. Yang, Y. Lai, J. Li, Electrochem. Commun. 2017, 82, 159-162.
  64.  
  65. C. Schmetterer, H. Flandorfer, K. W. Richter, U. Saeed, M. Kauffman, P. Roussel, H. Ipser, Intermetallics 2007, 15, 869-884;
  66. A. Kroupa, T. Kana, J. Bursik, A. Zemanova, M. Sob, Phys. Chem. Chem. Phys. 2015, 17, 28200-28210.
  67.  
  68. T. Nagase, A. Shibata, M. Matsumuro, M. Takemura, S. Semboshi, Mater. Des. 2019, 181, 107900;
  69. G. P. Vassilev, K. I. Lilova, J. C. Gachon, Thermochim. Acta 2006, 447, 106-108.
  70.  
  71. J.-L. Liang, Y. Du, Y.-Y. Tang, S.-B. Xie, H.-H. Xu, L.-M. Zeng, Y. Liu, Q.-M. Zhu, L.-Q. Nong, J. Electron. Mater. 2011, 40, 2290-2299;
  72. S. Oue, H. Nakano, R. Kuroda, S. Kobayashi, H. Fukushima, Mater. Trans. 2006, 47, 1550-1554.
  73. V. S. Marakatti, N. Arora, S. Rai, S. C. Sarma, S. C. Peter, ACS Sustainable Chem. Eng. 2018, 6, 7325-7338.
  74. J. H. Kim, S. M. Choi, S. H. Nam, M. H. Seo, S. H. Choi, W. H. Kim, Appl. Catal. B 2008, 82, 89-102.
  75.  
  76. A. Pei, R. Xie, Y. Zhang, Y. Feng, W. Wang, S. Zhang, Z. Huang, L. Zhu, G. Chai, Z. Yang, Q. Gao, H. Ye, C. Shang, B. H. Chen, Z. Guo, Energy Environ. Sci. 2023, 16, 1035-1048;
  77. A. Pei, G. Li, L. Zhu, Z. Huang, J. Ye, Y.-C. Chang, S. M. Osman, C.-W. Pao, Q. Gao, B. H. Chen, R. Luque, Adv. Funct. Mater. 2022, 32, 2208587;
  78. S. Zhang, A. Pei, G. Li, L. Zhu, G. Li, F. Wu, S. Lin, W. Chen, B. H. Chen, R. Luque, Green Chem. 2022, 24, 2438-2450.
  79. H. Xu, B. Fei, G. Cai, Y. Ha, J. Liu, H. Jia, J. Zhang, M. Liu, R. Wu, Adv. Energy Mater. 2019, 10, 1902714.
  80. H. Y. Jeong, M. Balamurugan, V. S. K. Choutipalli, E. Jeong, V. Subramanian, U. Sim, K. T. Nam, J. Mater. Chem. A 2019, 7, 10651-10661.
  81. S. Yamashita, M. Katayama, Y. Inada, J. Phys. Conf. Ser. 2013, 430, 012051.
  82. J. Hu, X. Liu, B. Wang, Y. Pei, M. Qiao, K. Fan, Chin. J. Catal. 2012, 33, 1266-1275.
  83. L. Liu, S. Kawakami, Y. Nakagawa, M. Tamura, K. Tomishige, Appl. Catal. B 2019, 256, 117775.
  84. V. Rekha, C. Sumana, S. P. Douglas, N. Lingaiah, Appl. Catal. B 2015, 491, 155-162.
  85.  
  86. B. Mallesham, P. Sudarsanam, B. V. S. Reddy, B. M. Reddy, Appl. Catal. B 2016, 181, 47-57;
  87. A. V. H. Soares, H. Atia, U. Armbruster, F. B. Passos, A. Martin, Appl. Catal. A 2017, 548, 179-190.
  88. D. K. Pandey, P. Biswas, Energy Fuels 2023, 37, 6879-6906.
  89. V. Montes, M. Boutonnet, S. Järås, A. Marinas, J. M. Marinas, F. J. Urbano, Catal. Today 2015, 257, 246-258.
  90. A. Alhanash, E. F. Kozhevnikova, I. V. Kozhevnikov, Appl. Catal. A 2010, 378, 11-18.
  91.  
  92. K. P. Kepp, Inorg. Chem. 2016, 55, 9461-9470;
  93. D. R. Vardon, A. E. Settle, V. Vorotnikov, M. J. Menart, T. R. Eaton, K. A. Unocic, K. X. Steirer, K. N. Wood, N. S. Cleveland, K. E. Moyer, W. E. Michener, G. T. Beckham, ACS Catal. 2017, 7, 6207-6219.
  94.  
  95. G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251-14269;
  96. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15-50.
  97. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, K. W. Jacobsen, Phys. Rev. B 2012, 85, 235149.
  98. S. J. Han, S.-M. Hwang, H.-G. Park, C. Zhang, K.-W. Jun, S. K. Kim, J. Mater. Chem. A 2020, 8, 13014-13023.
  99. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd ed., John Wiley & Sons, 2004, 358-360.

Grants

  1. 2022M3J5A1059161/carbon dioxide conversion of platform chemicals
  2. 5/carbon dioxide conversion of platform chemicals
  3. /National Research Foundation
  4. /Korean Ministry of Science
  5. /ICT
  6. /DWH
  7. /SHC
  8. RS-2022-00156196/Low carbon Chemical Technology Innovation Program for Alternative Fuel from Petroleum
  9. /Ministry of Trade, Industry, and Energy

Word Cloud

Created with Highcharts 10.0.01catalystNinanoalloyZnO2-PDOglycerolsynthesisfinelySnphaseszeoliticimidazolateframeworkMM-ZIF2-propanediolshowedconversionexcellentvarioussuccessfultunedcontainingsmallparticlesize67 nmmixed-metalinvestigatedevaluatedefficientproductioncrudecomprehensivelycharacterizedusingseveralanalyticaltechniquesAmongcatalysts3Ni1Sn/ZnONi/Sn=3/1bestcatalyticperformanceproducedhighestyield942 %~100 %alsolowapparentactivationenergy154 kJ/molstabilityresultsdemonstratedsynergyNi-SnalloydispersedmetallicsitesLewisaciditySnOspecies-loadedplayedpivotalrolehighactivityselectivityconfirmationacetolintermediatetheoreticalcalculationsverifyprovideleastenergeticpathwayformationselectivelyreusabilitysolventsuccessiveZIFalongrecyclabilityZIF-derivedenablesoverallsustainableprocessbelievepresentsyntheticprotocolusesbiomass-derivedplatformchemicalsvaluableproductscanappliedpreparationsNickel-TinNanoalloySupportedCatalystsMixed-MetalZeoliticImidazolateFrameworksSelectiveConversionGlycerol2-PropanediolNi−Snhydrogenolysis

Similar Articles

Cited By

No available data.