Interface-type tunable oxygen ion dynamics for physical reservoir computing.

Zhuohui Liu, Qinghua Zhang, Donggang Xie, Mingzhen Zhang, Xinyan Li, Hai Zhong, Ge Li, Meng He, Dashan Shang, Can Wang, Lin Gu, Guozhen Yang, Kuijuan Jin, Chen Ge
Author Information
  1. Zhuohui Liu: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  2. Qinghua Zhang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  3. Donggang Xie: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  4. Mingzhen Zhang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  5. Xinyan Li: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. ORCID
  6. Hai Zhong: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  7. Ge Li: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  8. Meng He: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  9. Dashan Shang: Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China. ORCID
  10. Can Wang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. ORCID
  11. Lin Gu: Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
  12. Guozhen Yang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  13. Kuijuan Jin: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. kjjin@iphy.ac.cn. ORCID
  14. Chen Ge: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. gechen@iphy.ac.cn. ORCID

Abstract

Reservoir computing can more efficiently be used to solve time-dependent tasks than conventional feedforward network owing to various advantages, such as easy training and low hardware overhead. Physical reservoirs that contain intrinsic nonlinear dynamic processes could serve as next-generation dynamic computing systems. High-efficiency reservoir systems require nonlinear and dynamic responses to distinguish time-series input data. Herein, an interface-type dynamic transistor gated by an HfZrO (HZO) film was introduced to perform reservoir computing. The channel conductance of Mott material LaSrMnO (LSMO) can effectively be modulated by taking advantage of the unique coupled property of the polarization process and oxygen migration in hafnium-based ferroelectrics. The large positive value of the oxygen vacancy formation energy and negative value of the oxygen affinity energy resulted in the spontaneous migration of accumulated oxygen ions in the HZO films to the channel, leading to the dynamic relaxation process. The modulation of the channel conductance was found to be closely related to the current state, identified as the origin of the nonlinear response. In the time series recognition and prediction tasks, the proposed reservoir system showed an extremely low decision-making error. This work provides a promising pathway for exploiting dynamic ion systems for high-performance neural network devices.

References

  1. Nat Mater. 2017 Jan;16(1):101-108 [PMID: 27669052]
  2. J Phys Condens Matter. 2016 Mar 16;28(10):103003 [PMID: 26881391]
  3. Nat Commun. 2014 Mar 24;5:3541 [PMID: 24662967]
  4. Nat Commun. 2020 Aug 7;11(1):3936 [PMID: 32769980]
  5. Nanotechnology. 2011 Jun 24;22(25):254014 [PMID: 21572192]
  6. Nat Commun. 2020 Jan 2;11(1):51 [PMID: 31896758]
  7. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  8. Sci Rep. 2012;2:287 [PMID: 22371825]
  9. Nature. 2017 Jul 26;547(7664):428-431 [PMID: 28748930]
  10. Adv Sci (Weinh). 2023 May;10(15):e2300471 [PMID: 36950731]
  11. Nat Mater. 2022 Feb;21(2):195-202 [PMID: 34608285]
  12. Nat Mater. 2017 Apr;16(4):414-418 [PMID: 28218920]
  13. Adv Mater. 2020 Nov;32(45):e2003984 [PMID: 32964602]
  14. Science. 1997 Apr 11;276(5310):238-40 [PMID: 9092468]
  15. Adv Mater. 2023 Jul;35(28):e2207736 [PMID: 37044111]
  16. Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180377 [PMID: 31006369]
  17. Adv Mater. 2022 Jun;34(24):e2109889 [PMID: 35397192]
  18. Nature. 2020 Apr;580(7804):478-482 [PMID: 32322080]
  19. Nat Chem. 2010 Mar;2(3):213-7 [PMID: 21124479]
  20. Nat Commun. 2017 Dec 19;8(1):2204 [PMID: 29259188]
  21. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  22. Phys Rev B Condens Matter. 1993 Jul 15;48(4):2102-2108 [PMID: 10008600]
  23. Sci Rep. 2013 Oct 03;3:2834 [PMID: 24089020]
  24. Nat Commun. 2023 Mar 30;14(1):1780 [PMID: 36997572]
  25. Sci Rep. 2012;2:514 [PMID: 22816038]
  26. IEEE Trans Neural Netw. 2011 Jan;22(1):131-44 [PMID: 21075721]
  27. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 [PMID: 6953413]
  28. Science. 2021 May 7;372(6542):630-635 [PMID: 33858991]
  29. Nat Commun. 2022 Apr 1;13(1):1729 [PMID: 35365642]
  30. Nat Commun. 2020 May 22;11(1):2571 [PMID: 32444607]
  31. Nat Commun. 2022 Nov 3;13(1):6590 [PMID: 36329017]
  32. Adv Mater. 2023 Sep;35(37):e2205169 [PMID: 36300807]
  33. Nat Neurosci. 2000 Nov;3 Suppl:1184-91 [PMID: 11127836]
  34. Nat Commun. 2021 Jan 18;12(1):408 [PMID: 33462233]
  35. Adv Mater. 2017 Aug;29(31): [PMID: 28628278]
  36. Nat Commun. 2021 Sep 30;12(1):5727 [PMID: 34593800]
  37. Nat Mater. 2018 Dec;17(12):1095-1100 [PMID: 30349031]
  38. Science. 2022 Feb 4;375(6580):533-539 [PMID: 35113713]
  39. Adv Mater. 2022 Dec;34(48):e2108826 [PMID: 35064981]
  40. Sci Adv. 2022 Dec 14;8(50):eade1156 [PMID: 36516242]
  41. Adv Mater. 2014 May;26(18):2789-93 [PMID: 24554587]
  42. Nat Mater. 2023 May;22(5):562-569 [PMID: 37138006]

Grants

  1. 12074416/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0dynamicoxygencomputingreservoirnonlinearsystemschannelcantasksnetworklowHZOconductanceprocessmigrationvalueenergyionReservoirefficientlyusedsolvetime-dependentconventionalfeedforwardowingvariousadvantageseasytraininghardwareoverheadPhysicalreservoirscontainintrinsicprocessesservenext-generationHigh-efficiencyrequireresponsesdistinguishtime-seriesinputdataHereininterface-typetransistorgatedHfZrOfilmintroducedperformMottmaterialLaSrMnOLSMOeffectivelymodulatedtakingadvantageuniquecoupledpropertypolarizationhafnium-basedferroelectricslargepositivevacancyformationnegativeaffinityresultedspontaneousaccumulatedionsfilmsleadingrelaxationmodulationfoundcloselyrelatedcurrentstateidentifiedoriginresponsetimeseriesrecognitionpredictionproposedsystemshowedextremelydecision-makingerrorworkprovidespromisingpathwayexploitinghigh-performanceneuraldevicesInterface-typetunabledynamicsphysical

Similar Articles

Cited By (6)