A model shows that fast growing species are the deadliest despite eliciting a strong immune response.

Jonathan B Wang, Hsiao-Ling Lu, Huiyu Sheng, Raymond J St Leger
Author Information
  1. Jonathan B Wang: Department of Entomology, University of Maryland, College Park, MD, USA.
  2. Hsiao-Ling Lu: Department of Entomology, University of Maryland, College Park, MD, USA.
  3. Huiyu Sheng: Department of Entomology, University of Maryland, College Park, MD, USA.
  4. Raymond J St Leger: Department of Entomology, University of Maryland, College Park, MD, USA. ORCID

Abstract

We used to investigate how differences between species in growth rate and mechanisms of pathogenesis influence the outcome of infection. We found that the most rapid germinators and growers and on fly cuticle were the fastest killers, suggesting that pre-penetration competence is key to success. Virulent strains also induced the largest immune response, which did not depend on profuse growth within hosts as virulent toxin-producing strains only proliferated post-mortem while slow-killing strains that were specialized to other insects grew profusely pre-mortem. strains have apparently evolved resistance to widely distributed defenses such as the defensin Toll product drosomycin, but they were inhibited by Bomanins only found in spp. Disrupting a gene (), that mediates Toll immunity has little impact on the lethality of most strains (an exception being the early diverged and another insect pathogen ). However, disrupting the sensor of fungal proteases () allowed rapid proliferation of strains within hosts (with the exception of ), and flies succumbed rapidly. Persephone also mediates gender differences in immune responses that determine whether male or female flies die sooner. We conclude that some strain differences in growth within hosts depend on immune-mediated interactions but intrinsic differences in pathogenic mechanisms are more important. Thus, varies greatly in tolerance to different strains, in part because some of them produce toxins. Our results further develop as a tractable model system for understanding insect- interactions.

Keywords

References

  1. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  2. Sci Rep. 2012;2:483 [PMID: 22761991]
  3. PLoS One. 2014 Aug 15;9(8):e104946 [PMID: 25127450]
  4. Cell Rep. 2019 Apr 23;27(4):1050-1061.e3 [PMID: 31018123]
  5. Sci Rep. 2015 Jul 23;5:12350 [PMID: 26202798]
  6. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16796-801 [PMID: 25368161]
  7. EMBO J. 1998 Aug 10;17(5):1217-27 [PMID: 9482719]
  8. Insect Sci. 2014 Feb;21(1):31-8 [PMID: 23956215]
  9. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  10. Sci Rep. 2020 Aug 31;10(1):14284 [PMID: 32868814]
  11. Adv Appl Microbiol. 2004;54:1-70 [PMID: 15251275]
  12. Malar J. 2014 Dec 06;13:479 [PMID: 25480526]
  13. Adv Genet. 2016;94:307-64 [PMID: 27131329]
  14. Eukaryot Cell. 2005 May;4(5):937-47 [PMID: 15879528]
  15. J Immunol. 2011 Jan 15;186(2):649-56 [PMID: 21209287]
  16. Cell. 2006 Dec 29;127(7):1425-37 [PMID: 17190605]
  17. Open Biol. 2020 Dec;10(12):200307 [PMID: 33292103]
  18. Immunity. 2000 May;12(5):569-80 [PMID: 10843389]
  19. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6647-52 [PMID: 16614065]
  20. Appl Microbiol Biotechnol. 2010 Jan;85(4):901-7 [PMID: 19862514]
  21. J Oral Microbiol. 2012;4: [PMID: 22368770]
  22. BMC Biol. 2017 Dec 21;15(1):124 [PMID: 29268741]
  23. Sci Rep. 2014 Dec 05;4:7345 [PMID: 25475694]
  24. PLoS Pathog. 2011 Jun;7(6):e1002097 [PMID: 21731492]
  25. Evolution. 2011 Mar;65(3):818-30 [PMID: 21044058]
  26. PLoS Pathog. 2017 Mar 3;13(3):e1006260 [PMID: 28257468]
  27. Nature. 2012 Apr 11;484(7393):186-94 [PMID: 22498624]
  28. New Phytol. 2010 Jul;187(1):209-216 [PMID: 20406404]
  29. Front Microbiol. 2015 Jan 28;6:19 [PMID: 25674081]
  30. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1287-92 [PMID: 22232661]
  31. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):15-26 [PMID: 18926975]
  32. J Innate Immun. 2018;10(4):306-314 [PMID: 29920489]
  33. Sci Rep. 2018 Aug 21;8(1):12501 [PMID: 30131599]
  34. New Phytol. 2009 Aug;183(3):513-529 [PMID: 19563451]
  35. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2152-7 [PMID: 11854512]
  36. Adv Genet. 2016;94:251-85 [PMID: 27131327]
  37. Mol Microbiol. 2005 May;56(3):763-73 [PMID: 15819630]
  38. Phytopathology. 2016 Nov;106(11):1255-1261 [PMID: 27348342]
  39. J Comp Physiol B. 2011 Aug;181(6):741-50 [PMID: 21424695]
  40. Science. 2011 Feb 25;331(6020):1074-7 [PMID: 21350178]
  41. J Biol Chem. 2007 Mar 23;282(12):8969-77 [PMID: 17227774]
  42. Mol Cell. 2018 Feb 15;69(4):539-550.e6 [PMID: 29452635]
  43. Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719): [PMID: 28289261]
  44. Fly (Austin). 2007 Jul-Aug;1(4):197-204 [PMID: 18820477]
  45. Insect Sci. 2008 Feb;15(1):29-43 [PMID: 20485470]
  46. PLoS Pathog. 2015 Apr 27;11(4):e1004876 [PMID: 25915418]
  47. PLoS Pathog. 2017 Oct 19;13(10):e1006683 [PMID: 29049362]
  48. PLoS Pathog. 2014 May 01;10(5):e1004067 [PMID: 24788090]
  49. Curr Genet. 2012 Apr;58(2):79-92 [PMID: 22388867]
  50. PLoS Genet. 2011 Jan 06;7(1):e1001264 [PMID: 21253567]

MeSH Term

Female
Male
Animals
Drosophila melanogaster
Metarhizium
Insecta
Beauveria
Immunity
DNA-Binding Proteins
Transcription Factors
Drosophila Proteins

Chemicals

Dif protein, Drosophila
DNA-Binding Proteins
Transcription Factors
Drosophila Proteins

Word Cloud

Created with Highcharts 10.0.0strainsdifferencesimmunegrowthwithinhostsspeciesmechanismsfoundrapidalsoresponsedependresistanceTollBomaninsmediatesimmunityexceptionfungalfliesPersephonegenderinteractionstolerancemodelmetarhiziumusedinvestigateratepathogenesisinfluenceoutcomeinfectiongerminatorsgrowersflycuticlefastestkillerssuggestingpre-penetrationcompetencekeysuccessVirulentinducedlargestprofusevirulenttoxin-producingproliferatedpost-mortemslow-killingspecializedinsectsgrewprofuselypre-mortemapparentlyevolvedwidelydistributeddefensesdefensinproductdrosomycininhibitedsppDisruptinggenelittleimpactlethalityearlydivergedanotherinsectpathogenHoweverdisruptingsensorproteasesallowedproliferationsuccumbedrapidlyresponsesdeterminewhethermalefemalediesoonerconcludestrainimmune-mediatedintrinsicpathogenicimportantThusvariesgreatlydifferentpartproducetoxinsresultsdeveloptractablesystemunderstandinginsect-showsfastgrowingdeadliestdespiteelicitingstrongDrosophilaloadsactivationinhibit

Similar Articles

Cited By