Emerald ash borer invasion of riparian forests alters organic matter and bacterial subsidies to south Michigan headwater streams.

Courtney E Larson, Patrick Engelken, Deborah G McCullough, M Eric Benbow
Author Information
  1. Courtney E Larson: Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA.
  2. Patrick Engelken: Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA.
  3. Deborah G McCullough: Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA.
  4. M Eric Benbow: Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA.

Abstract

Emerald ash borer (EAB) has killed millions of ash trees in the United States and Canada, yet impacts on terrestrial-aquatic linkages are largely unknown. Ash tree death along streams creates canopy gaps, increasing light to riparian plants and potentially affecting organic matter subsidies. Six EAB-related canopy gaps along streams across a gradient of timing of EAB invasion in Michigan were characterized for coarse woody material (CWM), terrestrial and aquatic leaf litter and their associated bacterial communities, and macroinvertebrates upstream, downstream, and at the center of the gap. Stream sites downstream of EAB-related canopy gaps had significantly lower dissolved oxygen and macroinvertebrate diversity than sites upstream and at the gaps. Yet there was no difference in CWM or aquatic leaf litter, likely due to downstream movement of organic matter from upstream riparian sources. Low abundance bacterial amplicon sequence variants unique to gap or forest were detected in leaves and leaf litter, suggesting that EAB-related canopy gaps altered leaf-associated bacterial communities. Overall, EAB invasion indirectly impacted some variables, while organic matter dynamics were resistant to change.

References

  1. ISME J. 2015 Nov;9(11):2477-89 [PMID: 25978544]
  2. Sci Rep. 2014 Nov 12;4:7014 [PMID: 25388562]
  3. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  4. Ecology. 2012 Jul;93(7):1501-8 [PMID: 22919896]
  5. Trends Ecol Evol. 2007 Dec;22(12):669-76 [PMID: 17981358]
  6. ISME J. 2012 Mar;6(3):610-8 [PMID: 22134646]
  7. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  8. Front Microbiol. 2019 Apr 02;10:651 [PMID: 31001228]
  9. Ecol Lett. 2015 Nov;18(11):1198-1206 [PMID: 26306742]
  10. Mol Ecol. 2015 Oct;24(19):5045-58 [PMID: 26331892]
  11. Freshw Sci. 2018;37(3):640-652 [PMID: 31428513]
  12. mSystems. 2017 Dec 5;2(6): [PMID: 29238751]
  13. Front Microbiol. 2020 Nov 06;11:586678 [PMID: 33240240]
  14. Ecol Appl. 2007 Apr;17(3):852-68 [PMID: 17494402]
  15. Annu Rev Entomol. 2014;59:13-30 [PMID: 24112110]
  16. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  17. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  18. Nucleic Acids Res. 2010 Dec;38(22):e200 [PMID: 20880993]
  19. ISME J. 2012 Jan;6(1):94-103 [PMID: 21716311]
  20. PLoS One. 2011;6(9):e24587 [PMID: 21931766]
  21. Mol Ecol. 2016 Aug;25(16):4059-74 [PMID: 27357176]
  22. Ecol Appl. 2016 Jul;26(5):1437-1455 [PMID: 27755760]
  23. PLoS One. 2011 Feb 24;6(2):e16900 [PMID: 21383980]
  24. Curr Protoc Microbiol. 2012 Nov;Chapter 1:Unit 1E.5. [PMID: 23184592]
  25. Appl Environ Microbiol. 2010 Feb;76(4):1307-10 [PMID: 20038707]
  26. ISME J. 2013 Mar;7(3):477-86 [PMID: 23051693]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0gapscanopyorganicmatterbacterialashEABstreamsriparianEAB-relatedinvasionleaflitterupstreamdownstreamEmeraldboreralongsubsidiesMichiganCWMaquaticcommunitiesgapsiteskilledmillionstreesUnitedStatesCanadayetimpactsterrestrial-aquaticlinkageslargelyunknownAshtreedeathcreatesincreasinglightplantspotentiallyaffectingSixacrossgradienttimingcharacterizedcoarsewoodymaterialterrestrialassociatedmacroinvertebratescenterStreamsignificantlylowerdissolvedoxygenmacroinvertebratediversityYetdifferencelikelyduemovementsourcesLowabundanceampliconsequencevariantsuniqueforestdetectedleavessuggestingalteredleaf-associatedOverallindirectlyimpactedvariablesdynamicsresistantchangeforestsalterssouthheadwater

Similar Articles

Cited By

No available data.