Population-wise labeling of sulcal graphs using multi-graph matching.

Rohit Yadav, François-Xavier Dupé, Sylvain Takerkart, Guillaume Auzias
Author Information
  1. Rohit Yadav: Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France. ORCID
  2. François-Xavier Dupé: Laboratoire d'Informatique et Systèmes UMR 7020, CNRS, Aix-Marseille Université, Marseille, France.
  3. Sylvain Takerkart: Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France. ORCID
  4. Guillaume Auzias: Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France.

Abstract

Population-wise matching of the cortical folds is necessary to compute statistics, a required step for e.g. identifying biomarkers of neurological or psychiatric disorders. The difficulty arises from the massive inter-individual variations in the morphology and spatial organization of the folds. The task is challenging both methodologically and conceptually. In the widely used registration-based techniques, these variations are considered as noise and the matching of folds is only implicit. Alternative approaches are based on the extraction and explicit identification of the cortical folds. In particular, representing cortical folding patterns as graphs of sulcal basins-termed sulcal graphs-enables to formalize the task as a graph-matching problem. In this paper, we propose to address the problem of sulcal graph matching directly at the population level using multi-graph matching techniques. First, we motivate the relevance of the multi-graph matching framework in this context. We then present a procedure for generating populations of artificial sulcal graphs, which allows us to benchmark several state-of-the-art multi-graph matching methods. Our results on both artificial and real data demonstrate the effectiveness of multi-graph matching techniques in obtaining a population-wise consistent labeling of cortical folds at the sulcal basin level.

References

  1. Cereb Cortex. 2012 Oct;22(10):2241-62 [PMID: 22047963]
  2. Cereb Cortex. 2018 Jun 1;28(6):1922-1933 [PMID: 28444225]
  3. Med Image Anal. 2017 Jan;35:32-45 [PMID: 27310172]
  4. Hum Brain Mapp. 1999;8(4):272-84 [PMID: 10619420]
  5. Med Image Anal. 2020 Dec;66:101749 [PMID: 32877840]
  6. Hum Brain Mapp. 2006 Dec;27(12):994-1003 [PMID: 16671080]
  7. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  8. IEEE Trans Med Imaging. 2004 Aug;23(8):968-82 [PMID: 15338731]
  9. Cereb Cortex. 2020 Mar 21;30(2):476-487 [PMID: 31216004]
  10. Neuroimage. 2011 Aug 1;57(3):1077-86 [PMID: 21596139]
  11. Neuroimage. 2018 Feb 15;167:453-465 [PMID: 29100940]
  12. J Affect Disord. 2023 Mar 15;325:224-230 [PMID: 36608853]
  13. IEEE Trans Pattern Anal Mach Intell. 2014 Jun;36(6):1092-106 [PMID: 26353273]
  14. Mem Inst Oswaldo Cruz. 2007 Aug;102(5):581-5 [PMID: 17710302]
  15. IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5261-5279 [PMID: 33961550]
  16. J Mach Learn Res. 2015;16:3367-3402 [PMID: 31130828]
  17. Cereb Cortex. 2020 Mar 14;30(3):1586-1602 [PMID: 31667522]
  18. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1208-13 [PMID: 25583500]
  19. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  20. Nat Rev Neurosci. 2018 Nov;19(11):672-686 [PMID: 30305712]
  21. Hum Brain Mapp. 2018 Sep;39(9):3625-3635 [PMID: 29700891]
  22. IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):6984-7000 [PMID: 32750800]
  23. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016 Mar;1(2):160-168 [PMID: 29560874]
  24. Med Image Anal. 2019 Oct;57:72-88 [PMID: 31280090]
  25. Nat Methods. 2014 Mar;11(3):333-7 [PMID: 24464287]
  26. IEEE Trans Image Process. 2015 Mar;24(3):994-1009 [PMID: 25576568]
  27. Neuroimage. 2010 Nov 1;53(2):450-9 [PMID: 20630489]
  28. IEEE Trans Med Imaging. 2017 Mar;36(3):838-848 [PMID: 27913336]
  29. Neuroimage. 2015 May 1;111:12-25 [PMID: 25676916]
  30. Med Image Anal. 2020 May;62:101651 [PMID: 32163879]
  31. IEEE Trans Pattern Anal Mach Intell. 2016 Jun;38(6):1228-42 [PMID: 26372208]
  32. Neuroimage. 2007 Oct 1;37(4):1050-4; discussion 1066-8 [PMID: 17766148]
  33. Nat Commun. 2021 Aug 25;12(1):5122 [PMID: 34433806]
  34. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 [PMID: 17548818]
  35. Commun Biol. 2020 Sep 15;3(1):510 [PMID: 32934300]
  36. IEEE Trans Med Imaging. 2011 Jun;30(6):1214-27 [PMID: 21278014]
  37. CNS Neurosci Ther. 2021 Mar;27(3):299-307 [PMID: 32762149]
  38. Cereb Cortex. 1995 Jan-Feb;5(1):56-63 [PMID: 7719130]
  39. Cereb Cortex. 2010 Mar;20(3):602-11 [PMID: 19561060]
  40. Neuroimage. 2008 Feb 1;39(3):927-35 [PMID: 17988891]
  41. PLoS One. 2023 Nov 9;18(11):e0293886 [PMID: 37943809]
  42. Front Neurosci. 2018 May 31;12:354 [PMID: 29904338]
  43. Sci Adv. 2022 Sep 9;8(36):eabn9516 [PMID: 36070384]
  44. Neuroimage. 2007 Oct 1;37(4):1033-41; discussion 1050-8 [PMID: 17870621]
  45. Med Image Anal. 2002 Jun;6(2):77-92 [PMID: 12044997]
  46. IEEE Trans Med Imaging. 2007 Apr;26(4):553-65 [PMID: 17427742]
  47. Neuroimage Clin. 2014 Mar 25;4:593-603 [PMID: 24936410]
  48. J Cogn Neurosci. 2007 Sep;19(9):1498-507 [PMID: 17714011]
  49. Nature. 2016 Aug 11;536(7615):171-178 [PMID: 27437579]
  50. AJNR Am J Neuroradiol. 2017 Jul;38(7):1449-1455 [PMID: 28522661]
  51. Neuroimage. 2021 Apr 1;229:117758 [PMID: 33497773]
  52. Neuroimage. 2011 Apr 15;55(4):1490-6 [PMID: 21224005]
  53. Nat Neurosci. 2016 Aug 26;19(9):1175-87 [PMID: 27571196]

MeSH Term

Humans
Magnetic Resonance Imaging
Cerebral Cortex
Algorithms
Cell Membrane
Palliative Care

Word Cloud

Created with Highcharts 10.0.0matchingsulcalfoldsmulti-graphcorticaltechniquesgraphsPopulation-wisevariationstaskproblemlevelusingartificiallabelingnecessarycomputestatisticsrequiredstepegidentifyingbiomarkersneurologicalpsychiatricdisordersdifficultyarisesmassiveinter-individualmorphologyspatialorganizationchallengingmethodologicallyconceptuallywidelyusedregistration-basedconsiderednoiseimplicitAlternativeapproachesbasedextractionexplicitidentificationparticularrepresentingfoldingpatternsbasins-termedgraphs-enablesformalizegraph-matchingpaperproposeaddressgraphdirectlypopulationFirstmotivaterelevanceframeworkcontextpresentproceduregeneratingpopulationsallowsusbenchmarkseveralstate-of-the-artmethodsresultsrealdatademonstrateeffectivenessobtainingpopulation-wiseconsistentbasin

Similar Articles

Cited By (1)