Cloning, computational analysis and expression profiling of steroid 5 alpha-reductase 1 (SRD5A1) gene during reproductive phases and ovatide stimulation in endangered catfish, Clarias magur.

Deepak Agarwal, Gulshan Kumar, Mohd Ashraf Rather, Ishtiyaq Ahmad
Author Information
  1. Deepak Agarwal: Institute of Fisheries Post Graduate Studies, TNJFU, Kazhipattur, India.
  2. Gulshan Kumar: College of Fisheries, Gumla, Phasia, India.
  3. Mohd Ashraf Rather: Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-Kashmir, Srinagar, India. biotechashraf786@gmail.com.
  4. Ishtiyaq Ahmad: Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-Kashmir, Srinagar, India.

Abstract

The cloning and characterization of the complete coding sequence of the Clarias magur SRD5A1 (CmSRD5A1) gene, which encodes an enzyme responsible for regulating steroid levels by converting testosterone into 5α-dihydrotestosterone (DHT), have been successfully achieved. DHT plays a vital role in enabling the complete expression of testosterone's actions in neuroendocrine tissues. The ORF of the full-length cDNA sequence of SRD5A1 was 795 bp, translating into 265 amino acids, with a total length of 836 bp including UTRs. Like other vertebrates, the signal peptide analysis revealed that SRD5A1 is a non-secretory protein, and hydropathy profiles indicated that it is hydrophobic in nature. The 3D structure of CmSRD5A1 sequence generated above was predicted using highly accurate AlphaFold 2 in Google Colab online platform. CmSRD5A1 contains seven transmembrane helices connected by six loops, with the N-termini located on the periplasmic side and C-termini on the cytosolic side. Structural superimposition with known bacterial and human SRD5As showed very high structural similarity. The electrostatic potential calculation and surface analysis of CmSRD5A1 revealed the presence of a large cavity with two openings one highly electropositive towards the cytosolic side and another relatively neutral towards the transmembrane region. The structural comparison revealed that the electropositive side of the cavity should bind to NADPH and the steroid hormone in the hydrophobic environment. Polar residues binding to NADPH are highly conserved and the same as known strictures. The conserved residues involved in hydrogen bonding with the ketone group at C-3 in the steroids hence fevering Δ4 double-bond reduction are identified as E66 and Y101. Our findings showed that SRD5A1 expression was lower during the spawning phase than the preparatory phase in female fish, while the administration of Ovatide (a GnRH analogue) resulted in up-regulation of expression after 6 h of injection in the ovary. In males, the lowest expression was observed during the preparatory phase and peaked at 16 h post- Ovatide injection in the testis. The expression of SRD5A1 in the brain of female fish was slightly higher during the Ovatide stimulation phase than the spawning phase. This study represents the first report on the cloning and characterization of the full-length cDNA of SRD5A1 in Indian catfish.

References

  1. Nat Commun. 2020 Oct 27;11(1):5430 [PMID: 33110062]
  2. Gen Comp Endocrinol. 1994 Sep;95(3):399-408 [PMID: 7821777]
  3. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  4. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  5. Steroids. 2014 Dec;92:81-9 [PMID: 25453338]
  6. J Clin Invest. 1994 Nov;94(5):2135-41 [PMID: 7962560]
  7. Nature. 1991 Nov 14;354(6349):159-61 [PMID: 1944596]
  8. J Mol Endocrinol. 1992 Feb;8(1):53-61 [PMID: 1543534]
  9. Zoolog Sci. 2000 Apr 1;17(3):395-404 [PMID: 18494596]
  10. J Steroid Biochem Mol Biol. 1995 Apr;52(4):307-19 [PMID: 7734398]
  11. Front Neurosci. 2011 Dec 19;5:137 [PMID: 22194715]
  12. Nat Commun. 2021 Jan 19;12(1):449 [PMID: 33469028]
  13. Endocrinology. 1988 Apr;122(4):1349-56 [PMID: 3345716]
  14. J Steroid Biochem Mol Biol. 2001 May;77(2-3):177-82 [PMID: 11377984]
  15. Genomics. 2020 Nov;112(6):4041-4052 [PMID: 32650102]
  16. Gen Comp Endocrinol. 2018 May 15;261:104-114 [PMID: 29438674]
  17. Nature. 2021 Aug;596(7873):590-596 [PMID: 34293799]
  18. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  19. Gen Comp Endocrinol. 2014 Feb 01;197:18-25 [PMID: 24315863]
  20. Drug Metab Rev. 2008;40(4):553-624 [PMID: 18949601]
  21. Anim Biotechnol. 2020 Apr;31(2):93-106 [PMID: 30570357]
  22. Gen Comp Endocrinol. 2011 May 1;171(3):309-18 [PMID: 21354156]
  23. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 [PMID: 25352553]
  24. J Comp Neurol. 2001 Sep 17;438(2):123-35 [PMID: 11536183]
  25. Aquat Toxicol. 2005 Mar 4;71(4):371-89 [PMID: 15710484]
  26. Gen Comp Endocrinol. 2014 Jul 1;203:10-20 [PMID: 24954687]
  27. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  28. Proteins. 2021 Dec;89(12):1607-1617 [PMID: 34533838]
  29. J Biomol Struct Dyn. 2023 Feb 9;:1-13 [PMID: 36757137]
  30. J Steroid Biochem Mol Biol. 2002 Jan;80(1):25-34 [PMID: 11867261]
  31. Reprod Biol Endocrinol. 2005 Aug 17;3:37 [PMID: 16107211]
  32. Annu Rev Biochem. 1994;63:25-61 [PMID: 7979239]
  33. J Biol Chem. 1989 Sep 25;264(27):16249-55 [PMID: 2476440]
  34. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9359-63 [PMID: 8415707]
  35. Aquat Toxicol. 2013 Mar 15;128-129:113-23 [PMID: 23280489]
  36. Gen Comp Endocrinol. 2010 May 1;166(3):489-97 [PMID: 19686747]
  37. Mol Reprod Dev. 2001 Aug;59(4):359-70 [PMID: 11468772]
  38. Front Neuroendocrinol. 2009 Aug;30(3):259-301 [PMID: 19505496]
  39. Comput Appl Biosci. 1995 Dec;11(6):681-4 [PMID: 8808585]
  40. J Biomol NMR. 1996 Dec;8(4):477-86 [PMID: 9008363]
  41. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  42. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  43. Gen Comp Endocrinol. 1985 Nov;60(2):244-51 [PMID: 4065533]
  44. Mol Biol Evol. 2001 Apr;18(4):542-50 [PMID: 11264405]
  45. Comp Biochem Physiol C Toxicol Pharmacol. 2012 Apr;155(3):491-7 [PMID: 22227439]
  46. J Biol Chem. 1992 Apr 25;267(12):8577-83 [PMID: 1314830]
  47. Gen Comp Endocrinol. 2010 Apr 1;166(2):388-95 [PMID: 20018190]
  48. Harvey Lect. 1983-1984;79:145-72 [PMID: 6400203]

MeSH Term

Male
Animals
Female
Humans
Cholestenone 5 alpha-Reductase
Catfishes
DNA, Complementary
NADP
Amino Acid Sequence
Testosterone
Dihydrotestosterone
Steroids
Cloning, Molecular
Membrane Proteins
3-Oxo-5-alpha-Steroid 4-Dehydrogenase

Chemicals

Cholestenone 5 alpha-Reductase
DNA, Complementary
NADP
Testosterone
Dihydrotestosterone
Steroids
SRD5A1 protein, human
Membrane Proteins
3-Oxo-5-alpha-Steroid 4-Dehydrogenase

Word Cloud

Created with Highcharts 10.0.0SRD5A1expressionphaseCmSRD5A1sidesequencesteroidanalysisrevealedhighlyOvatidecloningcharacterizationcompleteClariasmagurgeneDHTfull-lengthcDNAhydrophobictransmembranecytosolicknownshowedstructuralcavityelectropositivetowardsNADPHresiduesconservedspawningpreparatoryfemalefishinjectionstimulationcatfishcodingencodesenzymeresponsibleregulatinglevelsconvertingtestosterone5α-dihydrotestosteronesuccessfullyachievedplaysvitalroleenablingtestosterone'sactionsneuroendocrinetissuesORF795 bptranslating265aminoacidstotallength836 bpincludingUTRsLikevertebratessignalpeptidenon-secretoryproteinhydropathyprofilesindicatednature3DstructuregeneratedpredictedusingaccurateAlphaFold2GoogleColabonlineplatformcontainssevenhelicesconnectedsixloopsN-terminilocatedperiplasmicC-terminiStructuralsuperimpositionbacterialhumanSRD5AshighsimilarityelectrostaticpotentialcalculationsurfacepresencelargetwoopeningsoneanotherrelativelyneutralregioncomparisonbindhormoneenvironmentPolarbindingstricturesinvolvedhydrogenbondingketonegroupC-3steroidshencefeveringΔ4double-bondreductionidentifiedE66Y101findingsloweradministrationGnRHanalogueresultedup-regulation6 hovarymaleslowestobservedpeaked16 hpost-testisbrainslightlyhigherstudyrepresentsfirstreportIndianCloningcomputationalprofiling5alpha-reductase1reproductivephasesovatideendangered

Similar Articles

Cited By

No available data.